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1. Introduction 

 
This report provides an overview of the project activities carried out as part of the Western Power 
sponsored Electric Nation project by Lucy Electric GridKey Ltd and its subcontractor – The 
Technology Partnership (TTP).  
 
The problem statement was to determine whether an EV charging signature could be automatically 
detected though advanced data analytics when embedded in the other typical electrical loads seen 
on a substation feeder supplying  domestic properties. 
 

2. Project Background Overview 
 
The increasing growth rate of Electric Vehicle (EV) sales and usage has led to a corresponding 
increase in the number of charging points through Government sponsored initiatives such as 
Plugged-in Places and the Homecharge Scheme.  Fast charging points are now being installed in 
many commercial and public places (for example shopping centres, car parks, on-street parking 
etc.) and whilst these will undoubtedly be used, EV users will still want the ability to charge their 
vehicles at home. This will cause a substantial increase in the demand on the network both at 
Medium Voltage (11,000 volts and above) and Low Voltage (LV, 230/415volts). 
 
The My Electric Avenue project (http://myelectricavenue.info/about-project) highlighted the problem 
home charging may cause on the LV Distribution network – the final report from that project stated: 
“Across Britain 32% of local electricity networks (312,000 circuits) will require intervention when 40% 
- 70% of customers have EVs” – this analysis was based on low power (3kW) chargers supplied 
with the first generation Nissan Leaf. The latest vehicles are now being supplied with larger (7kW) 
single phase chargers so the size of the problem will increase. 
 
The combination of these growth factors produces a significant and potentially unpredictable load on 
the electricity network.  The nature of this additional strain is exacerbated by the fact that vehicles, 
being mobile, are not restricted to where or when they may be charged.  Although EV registration 
and home charger installation data is available to Distribution Network Operators (DNOs), due to the 
variabilities in the use of the chargers, this is not adequate for accurate modelling and subsequent 
planning of reinforcement to maintain operation of the network. 

 

3. Functional Requirements 
 
The intention of this project is to develop a system using data from LV monitoring devices coupled 
with a specially developed analytics algorithm to inform the planning decisions for network 
reinforcement as well as potentially providing an input to a future Active Network Management 
solution.  
 
The requirements for the solution were: 
 

- To use a commercially available LV Monitoring system to collect the required data  
- To collect the data for analysis on a secure Data Centre platform 
- To develop algorithms to be able to detect that a circa 7kW electric vehicle charger had been 

switched on to start charging 

http://myelectricavenue.info/about-project
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- To be able to detect that the circa 7kW electric vehicle charger had either been switched off 
or had completed its charge cycle 

- As a stretch target to be able to detect the number of vehicles and the type or family of 
vehicle types being charged 

- That the detection should be able to detect vehicles charging with the normal background 
electrical noise associated with a variety of type and number of domestic dwellings 

 

4. Methodology 

4.1 Overview of Planned Approach 
 
A decision was required at the start to determine whether the processing of the data would be done 
locally at the substation or at the head end (i.e. the Data Centre). Due to the level of processing 
expected to be required to carry out this analytics and that there was no need for that real time 
information to be available at the substation the decision was made to target the algorithms at the 
Data Centre.  
 
Based on this, the top level method planned was:- 
 

1. Collect sample signatures from as wide a variety of vehicles (pure EV and hybrids) as 
possible and starting and finishing in different states of vehicle charge 

2. Once collected these signatures could be analysed to look for similarities/differences and 
also for any common characteristics particularly at switch on and completion of charging and 
then the development of an algorithm to look for these characteristics 

3. Synthetically combine these sample signatures with a range of different profiles from LV 
monitoring 

4. Test the algorithm on these combined load profiles to determine its effectiveness 
 

4.2 Method Used 

4.2.1 Collection of Sample Signatures 
 
The initial step was to study and understand the charging profile of a variety of vehicle types. 
This work was done in parallel with the WPD EV Emissions Testing study in which the Power 
Quality signature (specifically the harmonic content) of a variety of vehicle types were measured and 
analysed. This project was run at the Millbrook Proving Ground where a selection of EVs were 
charged using a dedicated charging point – this consisted of 4 single phase chargers on a separate 
three phase supply. 
 
A GridKey LV monitoring system was installed alongside the Power Quality meters at Millbrook and 
set to record the voltages and current on each of the chargers. 
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Figure 1 – LV Monitoring Installation at Millbrook Proving Ground 

 
The measurements were set to a 1 minute reporting period and parameters captured included 
mean, min and max currents and voltages, real and reactive powers and THD. These parameters 
were reported back to and stored on the GridKey Data Centre via a secure GPRS link and a weekly 
CSV file produced and emailed to TTP. 
 
Millbrook then provided a weekly log on which identified type, date, time, start charge condition, end 
charge condition for all vehicles which had been charged in the previous week. This was then 
compared to the CSV such that a library of charge profiles has been generated. 
 
This has extended the work done on My Electric Avenue to create a library for different vehicle types 
that can be used for other projects in the future. 
 
A complete list of vehicle profiles created is as follows: 

 

Vehicle List 

       Vehicle 
No. 

Vehicle 
Make 

Vehicle Model Arrival 
Date 

SoT Date EoT Date Departure 
Date 

1 Mercedes B250e 18/04/2017 19/04/2017 21/04/2017 26/04/2017 

2 BMW 330e 27/02/2017 27/02/2017 02/03/2017 13/03/2017 

3 VW Passat GTE 08/05/2017 08/05/2017 09/05/2017 12/05/2017 

4 BMW i3 REX 13/03/2017 13/03/2017 16/03/2017 23/03/2017 

5 BMW i3 BEV 14/06/2017 19/06/2017 21/06/2017 21/06/2017 

6 BMW i8 29/03/2017 30/03/2017 30/03/2017 07/04/2017 

7 Tesla Model X 05/07/2017 06/07/2017 12/07/2017 14/07/2017 

8 Nissan Leaf Acenta 10/04/2017 11/04/2017 12/04/2017 24/04/2017 

9 Nissan Leaf Tekna 03/05/2017 03/05/2017 05/05/2017 17/05/2017 

10 Nissan eNV200 06/03/2017 08/03/2017 09/03/2017 20/03/2017 

11 Kia Soul 05/07/2017 06/07/2017 11/07/2017 14/07/2017 

12 Peugeot Ion 03/05/2017 17/05/2017 18/05/2017 30/05/2017 

13 Renault Kangoo Mk1 27/02/2017 27/02/2017 10/03/2017 13/03/2017 

14 Renault Kangoo Mk2 06/03/2017 07/03/2017 10/03/2017 20/03/2017 

15 Renault Zoe 10/04/2017 11/04/2017 13/04/2017 25/04/2017 

17 Mitsubishi Outlander Gx4 20/03/2017 20/03/2017 22/03/2017 03/04/2017 

18 Volvo V60 03/04/2017 04/04/2017 05/04/2017 07/04/2017 

19 VW Golf 20/03/2017 21/03/2017 23/03/2017 31/03/2017 
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20 Tesla Model S 17/05/2017 18/05/2017 27/05/2017 30/05/2017 

21 Hyundai Ioniq EV 03/04/2017 05/04/2017 11/04/2017 18/04/2017 

22 Kia Soul 13/03/2017 14/03/2017 16/03/2017 27/03/2017 

23 Kia Optima 24/04/2017 25/04/2017 26/04/2017 03/05/2017 

  

 
Table 1 – EV car types for which charging profiles have been captured 

4.2.2 Development of Detection Algorithm 
 
Inspection of the raw charging profiles from the different vehicles showed that from one charge to 
another of the same vehicle type resulted in a repeatable profile however from one vehicle type to 
another there were differences – some were current limited and some were power limited (so when 
looking at a trace of power against time the power limited ones had a flat “charging period” whereas 
the current limiting types had variations due to voltage changes). Also the vehicles had a range of 
battery cell balancing – these varied depending on the state of the battery. In summary there were a 
lot of variations. Examples of vehicle charge profiles are shown in section 4 of this report. 
 
We also looked at power, current and Total Harmonic Distortion (THD) in these raw data traces - 
particularly at the start of the charging cycle – there was a very small reactive power component and 
this was fairly constant throughout the charging cycle and there was no noticeable change in THD – 
certainly not something that could be detected when there were other electrical background 
loads/noise. We also repeated this looking at the 1-second data which is available from the GridKey 
unit and this did not show any specific features in the profiles. 
 
A previous project, known as Project Galaxy, also looked at load profiling for certain types of load. 
This measured (on a 1 minute basis) a series of electrical parameters which were then compared to 
a standard profile, we had created by isolating the load from any background noise and then 
measuring the same parameters. In that case there were repeatable features, particularly in the 
switch on profile, which we were able to detect and then combine with other parameters, to create 
an algorithm that reliably identified this specific type of load. 
 
Initially for the Electric Nation project we tried to use the same analytic techniques as used on 
Galaxy – traditional pattern correlation, probabilistic analysis etc. However, as the only real trigger 
was a 7kW load this increased the probability of false alarms to an unacceptable level. There are 
other similar sized loads of that type, for example electric showers which would trigger the analytics. 
 
A completely new and alternative approach was therefore adopted using a neural network “self-
learning” approach; this is shown in the diagram below: 
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Figure 2 – Neural Network Approach 
 

In order to further simplify the problem we limited the algorithm to try and detect a maximum of one 
EV charge switch on and one switch off event per hour and that both of these would be circa 7kW. 
This allowed the development of a multi-layered convolutional neural network algorithm which is a 
standard technique used for this type of analytics. 

 

4.2.3 Combining with “Standard” load profiles 

 
Obtaining suitable load profiles which did not have EV charging in them already was difficult. It was 
not known if there were any vehicle charging points on the particular feeders of the sample data or 
more particularly whether these charge points were being used. If there was an unknown charge 
event already happening this would skew the results. We were also limited to combine the EV 
sample data with data with the same reporting period (i.e. 1 minute). 
 
To minimise the risk, we used some of the oldest (2013-2014) 1 minute data we had collected from 
other projects on the principle that there were few charging points/EVs in 2013. We also chose data 
from geographic areas which had low penetration of EVs to further reduce the risk. This resulted in a 
relatively small sub-set of suitable data however we were able to have a range of feeder loading 
levels which were all from residential areas. We also expanded this data set by artificially modifying 
the data to increase and decrease the background loads. 

 

4.2.4 Algorithm Testing 

 
The algorithm was allowed to “learn” using the background data and then testing was carried out to 
both look for: 

 positive detections (i.e. when there was a vehicle present)  

 false-positives (i.e. when there was not a vehicle present but there was other electrical 
background noise which the algorithm mistook for a vehicle charging). 

 false negatives (i.e. when a vehicle was present but the algorithm mistook it for background 
noise) 

 
 

5. Results and Learning Outcomes 
 
During the initial data gathering exercise at Millbrook a number of different vehicle profiles were 
collected and some examples are shown below: 
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Vehicle #5 – BMW i3 REX    Vehicle #10 – Nissan Leaf Tekna 

 
 
 
 
 

 

 

 

  

Vehicle #23 – Kia Soul    Vehicle #16 – Renault Zoe 

 

 

 

 

 

 

 

 

 

Figure 3 – Sample EV charging curves (Power vs Time) 
 

As can be seen from these examples, the start-up ramp is very similar in each case but the end of 

the charging is very different depending on the battery cell balancing carried out. One vehicle that 

seemed to have different profile was the Porsche Cayenne, vehicle #22 which seemed to exhibit 

some variation from the “top hat” shape seen on the other vehicle types: 

 

 

 
 

Figure 4 – Porsche Cayenne typical charging profile 
 

5.1 Algorithm optimisation 
 
The algorithm as implemented in this demonstrator project took 1 hour blocks of data with the aim to 
determine whether an EV had started or finished charging in that timeslot. The human factors of EV 
charging mean that any domestic EV charge point is very unlikely to be used more than once per 
day (so in practice there is only 1 chance per day to miss an EV charging event). By contrast, there 
are 24 one hour slots where it is possible to assert the presence of an EV being charged when there 
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is no car present. Consequently, the algorithm must be pessimistic in order to avoid reporting many 
false positive events – which could lead to overestimation of the use of that particular charge point 
and the consequent risk of inaccurate analysis of the load profiles when considering future network 
planning.  
 
The figures below show the truth tables for each 1 hour detection window and the consequent 
charge point reporting accuracy taken over a 1 week period for the same data. It can be seen that 
with the balance set for a 95% correct determination of absence of charging vs. a 75% accuracy for 
presence of charging the errors in overall charge point usage over a week gives an approximately 
even error spread either side of the correct answer (which was 7 charges a week for this dataset). 
 

 

Figure 5 – EV Charging Confusion Matrices 
 
 
The ‘Confusion Matrices’ above (Figure 5) shows how often the algorithm makes errors for a large 
number of 1 hour reporting periods. The Y axis shows the “truth” (whether a charging event was 
present or not) and the X axis shows what the algorithm predicted. Tests falling in the boxes on the 
diagonal from top left to bottom right are correct answers. Tests falling outside that diagonal 
represent errors. The left hand box shows the absolute number of tests and the right hand box is the 
same data expressed as a percentage. 
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Figure 6 –Data from the confusion matrices shown in Figure 5 replotted over one week (i.e. 168 
hourly slots) for the case where no charging actually took place (left) and where there was 1 charge 

each day 
 
 
Overall, this seems to the developers to offer a fairly clear reflection of charge point usage given that 
usage will vary over any given week so while perfect accuracy would be desirable, data informing 
any decision to uprate a given circuit will have noise from many sources. It is possible to bias the 
algorithms further in order change the trade-off between false positives and negatives depending on 
the commercial requirements for the information. 
 
The algorithm has been developed to detect the characteristic signatures of the charging of electric 
vehicles. It uses a deep neural network, comprising of convolutional, pooling and long short-term 
memory (LSTM) layers that have been trained to respond to the switching on and off signatures of 
electric vehicle chargers, as observed in historical data. 
 

6. Implementation and Software Requirements 
 
The algorithm has been developed within the following Python environment: 
 

 Python 3.5 

 Numpy (v1.12.1) 

 Tensorflow (v1.1.0) 

 Keras (v2.0.2) 
 
The following key files are included in the source code package: 
 

 DeepConvLSTM.py – Python package containing the neural network setup, construction and 
main configuration parameters. 

 ElectricNation_001_DeepConvLSTM_32A.h5 – Keras model file containing the trained 
neural network 

 keras_tsc.py – Python scripts for training the neural network, evaluating, and plotting 

 performance metrics. 

 Generate_training_dataset.ipynb – iPython notebook for loading in CSV data from GridKey 
MCUs, electric vehicle charging logs, and preparing data for training the neural network. 
Corrects class imbalance (removes some of the negative cases) to ensure quality of training. 

 Generate_validation_dataset.ipynb – iPython notebook (similar to above) but for preparing 
validation data. Preserves the characteristics of the data, including class imbalance. 

 ml_metrics.py - Python package containing metrics relating to the performance of the 

 neural network. 

 sliding_window.py - Python package containing data pre-processing support functions 

 zoe_preprocess.py - Python package containing data pre-processing support functions 

 zoe_power_switching_model.py - Python package containing data pre-processing support 

 functions 

 power_switching_model.py - Python package containing data pre-processing support 
functions, from Project Galaxy. 

 dnn_infer.py – Python package containing the data pre-processing and neural network 
inference engine within a single function call. 

 anaconda_environment.yml – Anaconda configuration file, that can be used to create a 
Python environment as used for development and testing 
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7. Data Pre-processing 
 
Two IPython notebooks have been developed for handling data: Generate_training_dataset.ipynb 
and Generate_validation_dataset.ipynb. Both files load GridKey MCU data from CSV files, as 
background power data, and superimpose the vehicle ‘reference exemplars’ – charging signatures 
recorded separately for each vehicle type during testing at Millbrook Proving Ground. There is the 
option within these files (on by default to generate training data) to combine data samples in random 
permutations to create a larger number of aggregated test samples. This was necessary to generate 
the volume of training data required without reusing samples. 
 
For the training dataset, 10,000 synthetic test samples of length 4 days (with 1-minute resolution) 
were generated using background data from circa. 2014 (Project Galaxy), believed to contain 
negligible electric vehicle activity. Electric vehicle charge exemplars were superimposed at a 
random time, once per day with up to ±2 hours random movement either side per day. Only 32A 
vehicle chargers were used, resulting in 31 vehicle charge exemplars, from 5 unique vehicle types. 
From these, 6 exemplars were kept for use in the validation dataset, leaving 25 for training 
purposes. Data was restructured into an array format suitable for training the neural network, with 
four columns: 

 
Array data was scaled to bring the power values approximately into the range (-1:1), split into many 
smaller sections using a sliding window, and the mean was subtracted from each section to remove 
the effect of varying peak power levels. A class label was assigned to each section to denote, to 
identify if it contained: just background noise (0), a vehicle charger turning on in the 32A category 
(3), or a vehicle charger turning off in the 32A category (4). (The remaining two classes have been 
disabled, but supporting code remains for: a vehicle charger turning on in the 16A category (1), and 
a vehicle charger turning off in the 16A category (2).) 
 
After sectioning, 1.9 million sections of 60 minutes were available from the training dataset. A 10% 
fraction of the dataset was separated (random sections) and reserved for evaluation of the neural 
network model performance during training (the test dataset). 
 
The dataset was naturally class imbalanced: there are a lot more samples that are just background 
noise than there are samples containing vehicle charge signatures. This can lead to poor training 
performance. The ratio of classes within the training and test datasets was adjusted, by removing 
75% of the background noise samples. This reduced the total number of samples (training and test) 
to approximately 550,000, with class distribution as shown below in Figure 1.Mean)  
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The validation dataset was initially produced using ‘legacy’ data (circa. 2013), although the dataset 
load characteristics were believed unsuitable (possibly industrial loads), so fresh synthetic test 
samples were generated from the Project Galaxy data. The dataset was generated in a similar 
manner to the training dataset (above), although the validation vehicle reference exemplars were 
used instead, and the distribution of classes was not adjusted. Each test sample was duplicated and 
vehicle charging reference exemplars were selected at random and superimposed on to every other 
test sample. This meant that every test sample was in the dataset twice – once with a vehicle 
charge exemplar and once without. 
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8. Neural Network Design 
 

The neural network is a classifier that operates on multi-channel time series data. Seven variant 
designs of network were considered, comprising of convolutional and LSTM layers. Network 
performance was evaluated using a hold-out test dataset after 50 epochs of training. The preferred 
design is of structure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The neural network was developed using the Keras package, which operates on the Tensorflow 
framework within Python. 
 
 

9. Algorithm Training 
 
The deep convolutional LSTM neural network was trained over 500 epochs (full passes of the 
training dataset), to minimise the categorical cross-entropy loss function, using the Root Mean 
Square Propagation (‘RMSprop’) variant of stochastic gradient descent optimisation. The trained 
model was saved to a Keras HDF5 file (supplied). On a GPU-based workstation the training took 
approximately 8 hours. 
 

10. Performance Validation 
 
Algorithm performance was evaluated using a single pass of the validation dataset, by comparison 
with the known ‘ground truth’ class labels. The accuracy is assessed as the proportion of predictions 
that identified the correct category, with note of the number of false positives (vehicles identified 
when not present) and false negatives (vehicles not identified). Performance metrics are contained 
within the attached slides. 
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11. Installation 
 
The recommended method of operation is via the Anaconda distribution of Python 
(www.anaconda.com). The included environment file can be used to create a suitable Conda 
environment using the following command: 
 

conda env create -f anaconda_environment.yml 
 
Note that if it is wished to operate Keras and Tensorflow in conjunction with a GPU, the above 
command is not suitable and the developer’s installation instructions should be followed instead. 
The Python script files included in this distribution do not require installation, and can be run as soon 
as the compressed archive file has been decompressed. 
 

12. Execution 
 
An end-to-end example of training the neural network and evaluating test data is included in the 
Python script file keras_tsc.py. Alternatively, the included Python package dnn_infer.py includes a 
single function that can be imported and called to analyse a single MCU data file in CSV format. 
 
For example: 
 

from dnn_infer import analyse_MCU_file 
 
MCU_filename = ‘MCU 001143233008 from 2017-01-30 to 2017-02-06.csv’ 
 
results = analyse_MCU_file(MCU_filename) 

 

13. Limitations of the current algorithm  
 
As discussed above the, risk of false positives vs false negatives has been balanced by considering 
the known usage patterns of EV chargepoints however the current state of development has one 
key weakness which we were not able to address within the current project. This concerns the use 
of 1 hour time segments as the search unit. The neural network algorithm developed for this project 
has been trained to look for just 1 charging event; two charging events in the same 1 hour slot will 
be recorded as only a single event. This is likely to be acceptable if the cable being monitored was 
feeding just 1 house since charging events are typically much longer than 1 hour and the chance of 
2 cars being topped up from a 7kW charger within a 1 hour slot will be very low, perhaps even when 
many households have 2 EVs. 
 
This algorithm is designed to operate at the substation however, and the feeders here supply 80 or 
more houses. This makes the likelihood of more than 1 EV connecting in any 1 hour slot very high, 
particularly given the known early evening connection peak identified by Electric Nation. Given this 
limitation we have considered several options to mitigate the risk but have not developed or tested 
them at this point. 
 

 Shorter unit of search. It is thought that cutting the unit of search down to 15 min would not 
seriously affect the false positive/negative rate and would reduce the likelihood of multiple 
connections in a single time slot by a factor of 4. However, on a busy feeder this is unlikely to 
be enough. Narrowing the window beyond this would make it difficult to exclude many of the 
other loads leading to a higher false positive rate. 



 
 

GK11000004  
Issue 1.3 

 

GridKey  |  Project Report   Commercial in Confidence                                    page 16 

 

 

 Train algorithm for multiple charge signatures. A better possibility would be to train the 
algorithm to recognise multiple events in a given 1 hour slot. This is expected to be viable but 
will require much more training data. In practice it’s difficult to predict how much though, and 
it’s often possible to create “synthetic data” from a smaller real dataset (as we have in the 
existing work) and still get good results. Testing the existing algorithm on real live data is an 
important first step however.  

 More rapid sampling. Sampling much more often than 1 per min is expected to reveal more 
characteristic structures within the charging profile. If a good fingerprint can be found in the 
on/off events related to charging and/or greater confidence can be obtained for other loads 
on the network which can then be reliably excluded, charging events can then be counted 
much more reliably. The following sections recommend this as the preferred route forward 
but it does represent a significant development effort.  

 
Overall it is likely that a combination of the latter 2 suggestions will yield the best results going 
forward
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14. Milestone and Deliverables Performance 
 

 

 

 

 

 

 

 

 

 

 

 

 

Project 

Milestones 
Quarter 

Target 

Date 

Completed 

Date 
Milestones 

0 01/05/2016 01/06/2016 Project Initiation 

1 29/07/2016 01/02/2017 

Millbrook Site Survey with WPD 

Installation of EV Charging points 

Install 1 off GridKey systems at Millbrook 

testing ground 

Determine LV sites of interest (WPD) 

2 31/10/2016 25/04/2017 

Collect raw data from a variety of vehicle 

types 

Initial analysis of data by TTP 

Install GridKey systems on WPD network 

where there are known PIV clusters 

3 31/01/2017 30/04/2017 Project Q3 Completion 

4 28/04/2017 01/10/2017 

Initial analysis of data by TTP 

Creation of Functional Requirements 

Document 

Creation of initial algorithm 

Electronically combine raw data with existing 

substation data 

Test algorithm 

Update algorithm as appropriate 

5 31/07/2017 01/12/2017 

Collect real substation data 

Test algorithm with real data 

Update NIA Project Progress Report 

6 31/10/2017 25/06/2018 

Project Completion 

Completion of Closedown Report 

Delivery of Functional Specification for 

Algorithm 
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15. Project Closure Recommendations 
 
The problem to be solved turned out to be more complex than expected – other than a typical “top 
hat” shape there was little that (electrically) determined it to be an EV rather than some other load. 
 
Although we were able to get a reasonably high probability of detection (>95% for individual hourly 
samples), this was partially as a result of limiting the problem (so only looking for circa 7kW vehicles 
and also only looking for one switch on event per hour) and partly by optimising the algorithm for 
accurate positives (at the expense of a higher (~75%) negatives accuracy). In other words, the 
algorithm seldom reported a car charging when one was not there but more often missed a car that 
was in fact charging. 
 
There is an alternative of seeing the 7kW rising ramp and then trying to eliminate other things it 
could be however this only works if you know all the other things it could be so this is not really a 
practical solution. 

Although we were able to get a reasonably high probability of detection (>95% for individual hourly 
samples), this was partially as a result of limiting the problem (so only looking for circa 7kW vehicles 
and also only looking for one switch on event per hour) and partly by optimising the algorithm for 
accurate positives (at the expense of a higher (~75%) negatives accuracy). In other words, the 
algorithm seldom reported a car charging when one was not there but more often missed a car that 
was in fact charging.  
 
The decision described in section 3.1 to carry out the calculations at the Data Centre end was 
absolutely correct for this project – there was a lot of processing and more particularly storage 
required for the neural network and the GridKey MCU520 has only very limited processing 
capability. The downside of this decision is that the current algorithms are restricted to operating on 
data at 1 minute intervals. In the context of identifying EV charging this is far from ideal since the 
chargers typically change state over a much shorter time period so a lot of potentially useful 
information is lost. Moving to more rapid time reporting, 1 second data or even data at 5Hz, is 
expected to offer a lot of scope for improvement. The concern however is the cost of backhauling 
this much greater volume of data.  
 
Since the start of the project, GridKey has introduced a newer MCU – known as the MCU318. 
Although it still only has limited processing capability in order to minimise the price of the unit, it 
does contain a Cortex M4 which is considerably more powerful than the PIC processor in the 
MCU520 and does have spare processing capacity and some available memory. 
 
The MCU318 is sampling the current and voltage sensor data at 6.4kHz and is calculating 
parameters at 5Hz. The system is already carrying out waveform captures for use both on distance 
to fault analytics and also for future PQ software upgrades. 
 
So a potential solution could be to carry out some of the processing locally on this new generation of 
GridKey devices. This will require some innovation in numerical computing as well as algorithm 
development because of the very limited processing and memory resources on those cost focussed 
units but we think there is good scope for performance improvements using this approach. 
 
Sensing at the higher frequencies the GridKey is now capable of also offers potential to resolve EV 
chargers from other domestic loads, and even different chargers from each other.   
 
It is therefore proposed to swap one of the MCU520s currently being used on the Electric Nation 
project with an MCU318 and using the information from the smart chargers to carry out data capture 
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so the results can be analysed and determine whether a software algorithm could be incorporated 
into the MCU itself which detects when an EV charge is started and sends an alarm. This could also 
be something an LV-Cap container running in an OpenLV architecture could run. (OpenLV is a 
Network Innovation Competition project to provide a software architecture which allows data from 
multiple sources to be combined and shared with the Network Operators and third party companies, 
more details are ar https://openlv.net/). Due to the difference in switch off profiles, this is something 
that may require the Data Centre still to detect. 
 
Overall the project has demonstrated that detecting EV charging profiles is difficult but possible 
however it requires better than 1 minute data resolution to be successful. 

 
 

 


