

NEXT GENERATION NETWORKS

Balancing Act Conference

Thursday 11th May 2017 One Great George Street, Westminster

Agenda

09:30	Registration & Refreshments
10:00	Welcome & Introductions Nigel Turvey, Network Strategy and Innovation Manager
10:10	DNO-DSO Transition Roger Hey, Future Networks Manager
11:10	Refreshments & Networking
11:35	Project ENTIRE Matt Watson, Innovation and Low Carbon Networks Engineer
12:35	Lunch & Networking
13:20	Afternoon Breakout Sessions
14:20	Refreshments & Networking
14:45	Afternoon Breakout Sessions

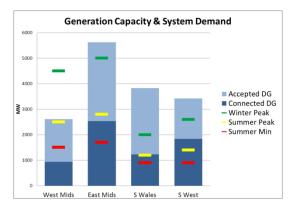
NEXT GENERATION NETWORKS

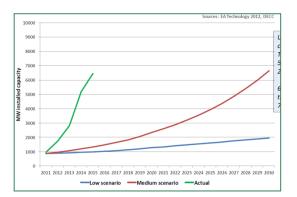
DNO to DSO The Role of Flexibility

Balancing Act Conference Thursday 11th May 2017

Roger Hey Future Networks Manager

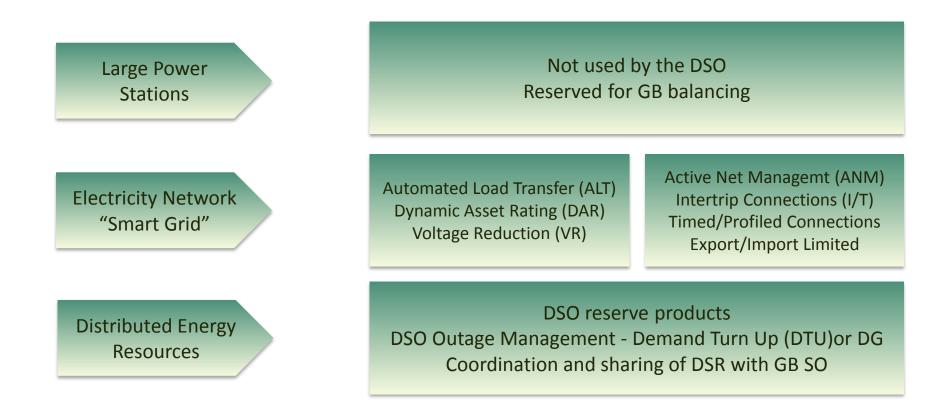
Distribution System Operator (DSO)


- A Distribution Network Operator (DNO) provides a network sized to support times of maximum demand and/or generation output. It is sufficiently large to enable the GB Market to consider it having infinite capacity.
- A Distribution System Operator (DSO) exploits ICT to deliver a network that makes optimal use of capacity:
 - smarter network solutions (eg. DAR; ALT, Meshing, ANM, Intertrips)
 - Non-network solutions (eg. DSR, DG, Storage, Reactive Power Services)
- DSO roles will include:
 - Modelling, managing, contracting and dispatching power and energy flows
 - Brokering ancillary services
 - Local and regional network balancing and congestion management
 - Relationship with the GB SO: Coordinate operations and provide services
 - Become a platform for energy suppliers, communities and other market participants to have visibility of network congestion in order to facilitate optimal DG and DSR solutions

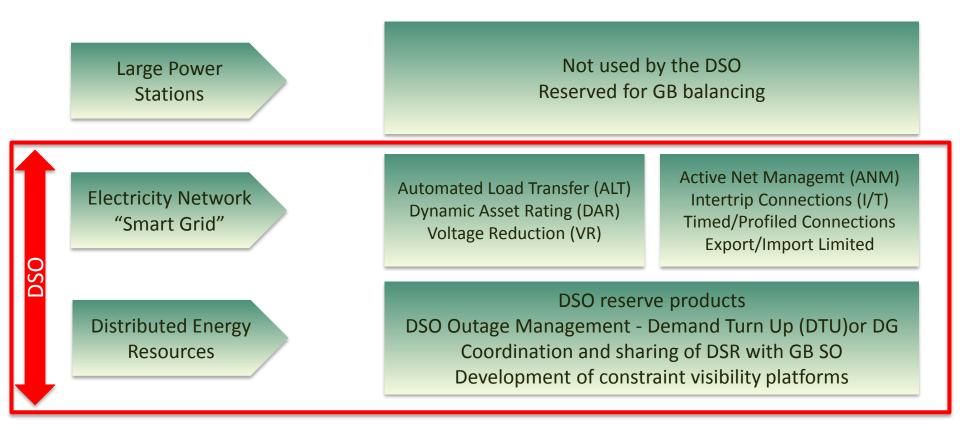

Increased network visibility, advanced control systems and data analytics will allow the DSO to predict energy volumes and despatch flexibility services

DNO to DSO Drivers

- International and UK binding Climate targets delivered through renewable DG, Low Carbon Heat and Transport
- Rapid changes in distributed generation and other Distributed Energy Resources (DER)
 - much more DG (14GW Winter Peak; 20GW DG, 12% of Energy)
 - Behind the meter impact is unknown; volatile market/incentives
 - 8GW of Energy Storage applications
 - Growing ancillary services market DSR at a national level
- Consideration of whole system optimisation
 - Centralised Generation, Gas, Heat and transport fuels
- ICT revolution and ubiquitous telecommunications
- Significant uncertainty over the pace of change
 - Electrification of Transport and Heating
 - Risk of stranded assets
 - Long lead times and planning restrictions to build conventional

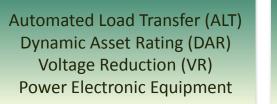


DSO Flexibility Services

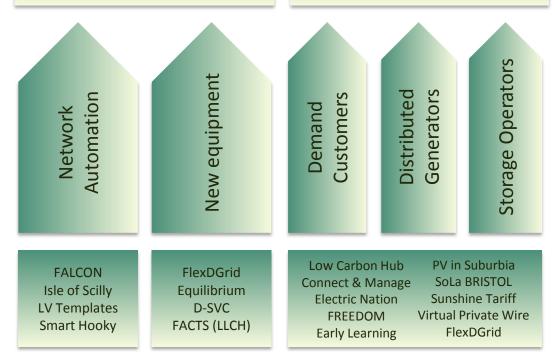

Electricity System Flexibility can come from three sources:

DSO Flexibility Services

Electricity System Flexibility can come from three sources:



DSO Flexibility Services (Smart Grid)

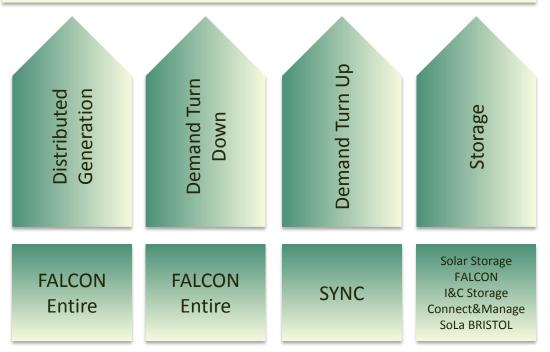

DSO Flexibility from the Electricity Network and Connections:

Electricity Network "Smart Grid"

- We are technology agnostic.
- Security and resilience are critical.
- High availability and fail-safe
- Alternative connections are customer led
- Rollout is prioritised by need.
- Plan to exploit Smart Meter data
- Our Future Networks Programme is delivering insight and will allow for a rapid rollout to BAU.

Active Net Managemt (ANM) Intertrip Connections (I/T) Timed/Profiled Connections Export/Import Limited

DSO Flexibility Services (DSR)


DSO Flexibility from Distributed Energy Resources:

Distributed Energy Resources

- We are technology agnostic.
- DSO flexibility products have different technical requirements to the GB SO.
- DSR is a market provided service.
- Products designed to secure supplies at the lowest possible *whole system* cost.
- Our Future Networks Programme is delivering insight and will allow for a rapid rollout to BAU.

Reserve product – "Flexible Power" Outage Management - Demand Turn Up (DTU) Coordination and sharing of DSR with GB SO Development of constraint visibility platforms

A DSO four-point plan

Expand the existing roll out and application of smart network solutions to the higher voltage

networks, prioritising areas which are the most likely to benefit. From this we will optimise investment decisions, deliver greater network flexibility and maximise customer connection choice (flexible connections for demand, generation and storage).

Contract with customers and aggregators for

non network solutions. Co-ordinate with other parts of the industry by helping to establish visibility platforms for suppliers, aggregators and customers. This will include the requirement to raise the awareness of DSR and to help customers to value stack where appropriate.

Co-ordinate with SO at the T/D interface. Share data and forecasts in multiple time horizons. Maintain overall system security. Consider whole system issues and propose solutions. Secure additional flexibility through prosumer awareness – actively support Power Responsive. No exclusivity in DSO flexibility contracts.

Protect the integrity and safety of lower voltage

networks. We will maximise the use of smart meter data, apply additional network sensing where relevant and implement simple control schemes. We aim to develop wider flexibility for the use of import/export capping as an alternative to conventional solutions only reinforcing the networks when these solutions cannot deliver what is required.

Gerard Boyd, Commercial and Innovation Manager SP Energy Networks

Nick Easton, Program Manager - Whole System National Grid

Steve Atkins, Lead Commercial Contract Manager Scottish & Southern Electricity Networks

Nigel Turvey, Network Strategy and Innovation Manager Western Power Distribution

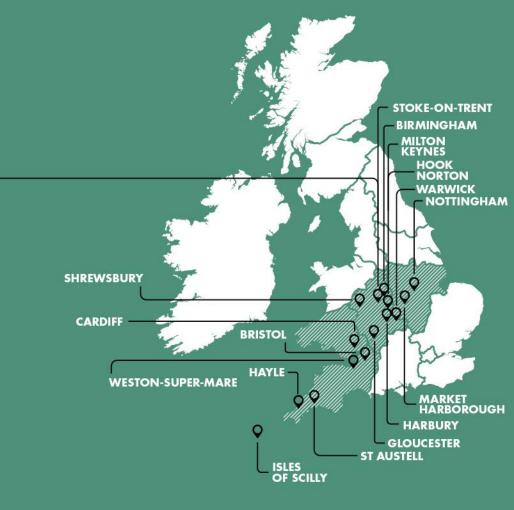
THANKS FOR LISTENING

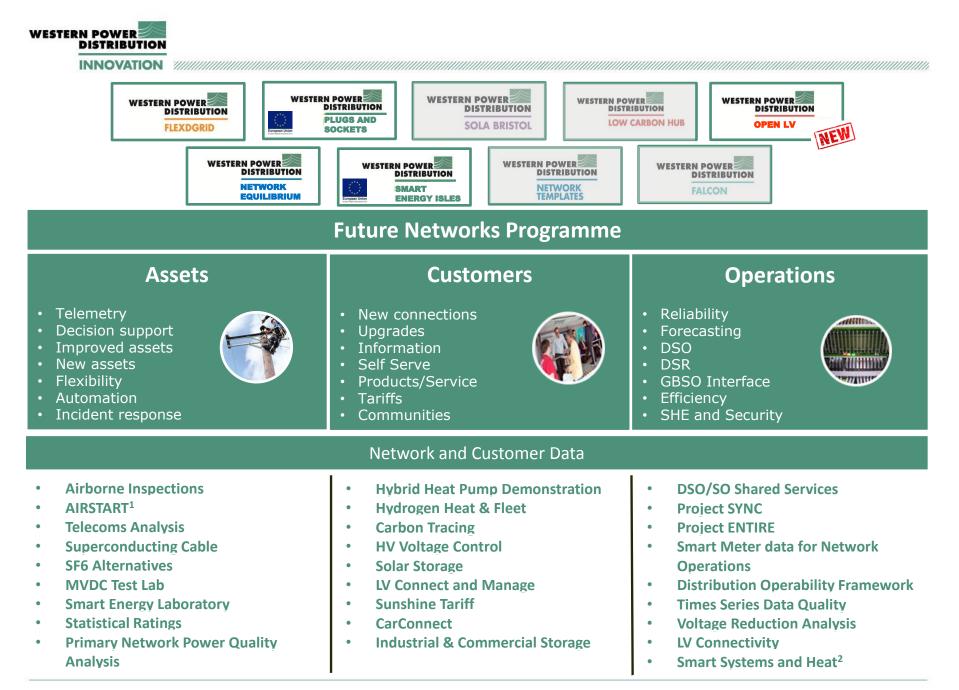
WESTERN POWER DISTRIBUTION

Serving the Midlands, South West and Wales

Roger Hey Western Power Distribution Future Networks Manager

wpdinnovation@westernpower.co.uk


www.westernpowerinnovation.co.uk



NEXT GENERATION NETWORKS

Project Entire Balancing Act Conference 11th May 2017

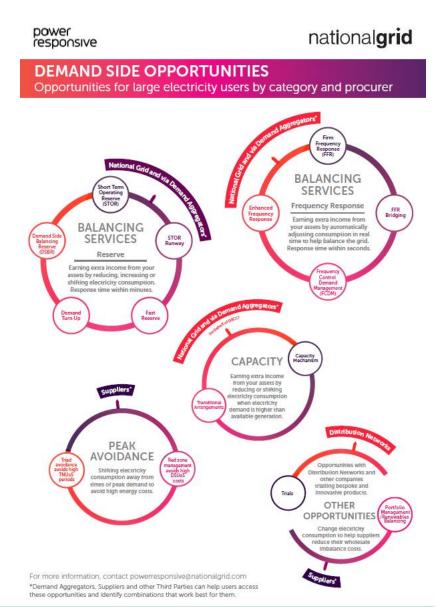
Matt Watson Innovation & Low Carbon Networks Engineer

Note: 1 - Funded by Aerospace Technology Institution; Note 2 - Funded by the Energy Systems Catapult

Agenda

- What is DSR?
- Why would a DNO use DSR?
- Context for project Entire
- What we are doing
- Project timescales
- Customer proposition
- Questions

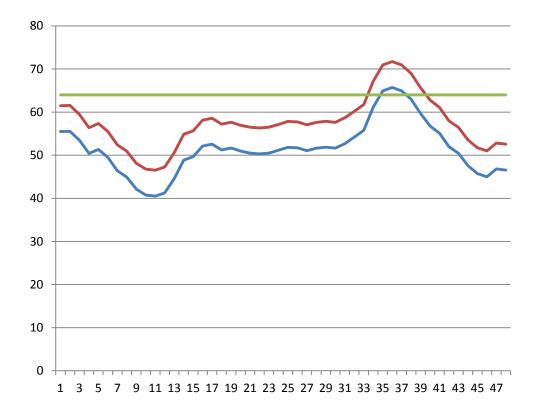
What is meant by Demand Side Response?


- Demand side response is intelligent energy usage. By knowing when to increase, decrease or shift their electricity consumption, businesses and consumers will save on total energy costs and reduce their carbon footprint. Power Responsive
- Utilises flexibility of the demand side to help balance network
- Demand that can change output following a signal
- "can" means both technically but also commercially

Project Entire

DSR sits in a wider market

- Lots of existing schemes and values for flexibility.
- Need to fit into wider market
- Commercial development of service just as important as the technical side.
- Very different from installing kit on the network



Why would a DNO want to use DSR?

- Avoid or defer reinforcement
- For both winter peak and summer minimum
- Will always compare against traditional reinforcement which has variable costs

Key characteristics

- Locational
- Higher voltages
- Limited capacity (pay as you go)
- Always compared with reinforcement
- Potentially time bound
- For n-1 conditions but called pre fault
- Needs to integrate with ANM
- Needs to be integrated with other DSR schemes

Project Entire

- A key DSR project following on from FALCON and SYNC
- Focus on commercial mechanisms and revenue stacking
- How to make DNO led DSR commercially viable
- Interaction between DNO and SO led DSR
- Understand scalability of DSR
- Fits into wider DSO and active networks innovation
- Looking for alternative solutions to 132kV reinforcement

What we are doing?

- Facilitating 5 WPD CMZ services
- Developing managed service
- Create customer sales capability
- Developing technical systems and processes
- Wider engagement in target area

Project Entire

Where?

• East Midlands, along M1 and M40

WESTERN POWER DISTRIBUTION INNOVATION

Project timescales

4 year trial, started in June 2016 \bullet

Task	Timescales
Project Design	June 2016 – February 2017
Build Phase	February 2017 – November 2017
Customer recruitment	April 2017– February 2019
Trial Phase	November 2017 – March 2020
Go-live for Triad	November 2017
Go-live for STOR	April 2018
Go-live for CMZ	June 2018
Review	Following each year of the trial
Report	April 2020- June 2020
Closedown	June 2020

Customer proposition

Customer Proposition

- Creation of Flexible Power branding
- Simplifying DSR programmes into single service
- Customer engagement and recruitment
- Increasing profile of DSR in target area
- Revenue stacking from multiple programmes

Branding

- Clearly identifiable as a WPD initiative
- Retaining key aspects of WPD identity
- Unique web presence and contacts

Managed Service

- Advanced control capability from new centralised facility
- Continuous monitoring of assets with alerts and alarms
- Agreed operating procedures taking away local resource burdens.
- Customer has ultimate control of inhibiting dispatch
- Simplifying DSR for customers
- Asset optimisation
- Self service statements and reports through customer portal

Services

Simple CMZ service:

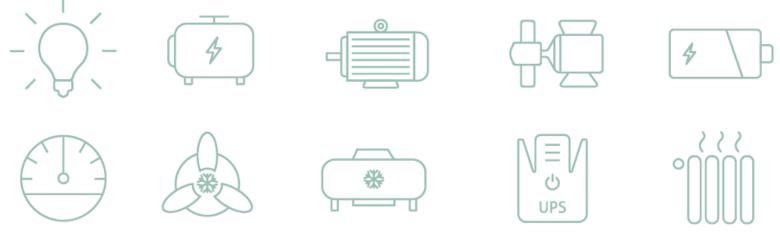
- Week ahead notification of probable requirement
- Arming fee assures of profit
- Utilisation fee covers operating costs
- Designed to integrate with other services
- No deductions for service payments

Services

National Grid services:

- Initially working with STOR flexible services
- De-rated capacity to maximise service quality and earnings
- Majority of generated revenue passed through to participants
- Simplified performance contracts
- No annual performance reconciliations
- Minimising negative impacts from group performance
- De-rated performance targets to 95%

Services


Triad Avoidance:

- TNUoS still valuable behind the meter
- Not pursuing export benefits
- Managed service, not warnings
- Continuing successful record of avoidance from low response durations
- Compatible with CMZ

Who are we targeting?

- Half hourly metered customer in the target area
- Ability to reduce demand or increase generation within 15 minutes of a signal and hold for at least 2 hours
- Simple or managed service
- Direct customers or through aggregators

What's the process?

Simple and easy to access

Consultation with customer

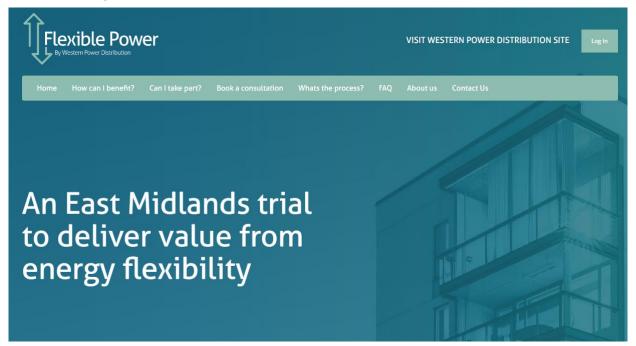
Audit customer energy usage

Recommend revenue sources

Install equipment

Bid the customer in

/		
(\cap	
(土	
		Ϊ
	\smile	


Send recurring payments to the customer

Ongoing admin via client app

How to get involved

www.flexiblepower.co.uk

Wpdflexiblepower@westernpower.co.uk

THANKS FOR LISTENING

WESTERN POWER DISTRIBUTION

Serving the Midlands, South West and Wales

Matt Watson

Western Power Distribution

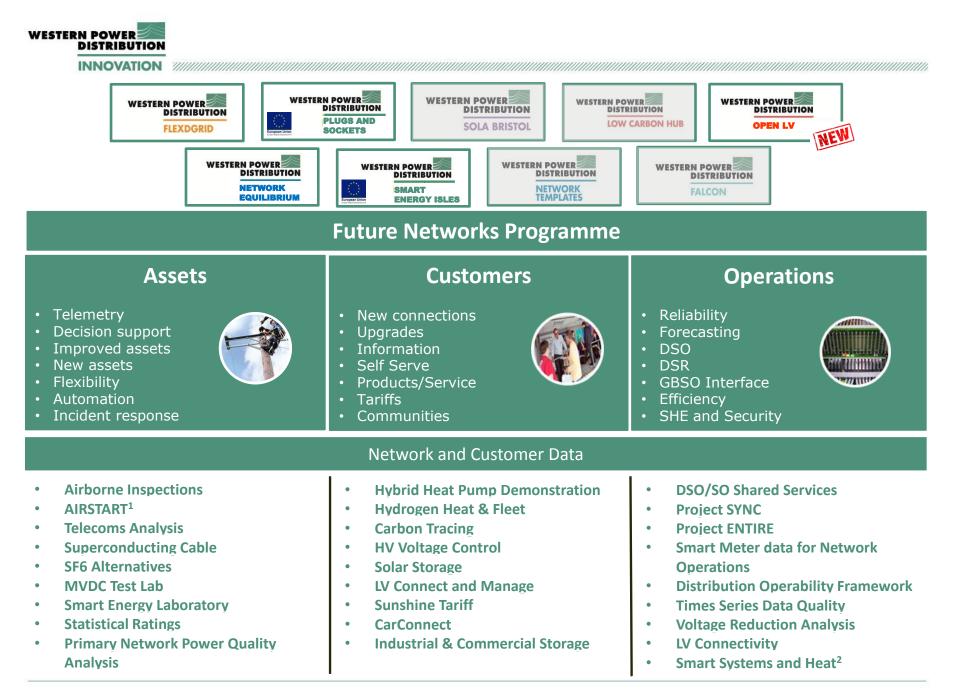
Innovation and Low Carbon Networks Engineer 0117 933 2045 *mwatson@westernpower.co.uk*

Gary Swandells

07727060075 ggswandells9@westernpower.co.uk

wpdinnovation@westernpower.co.uk

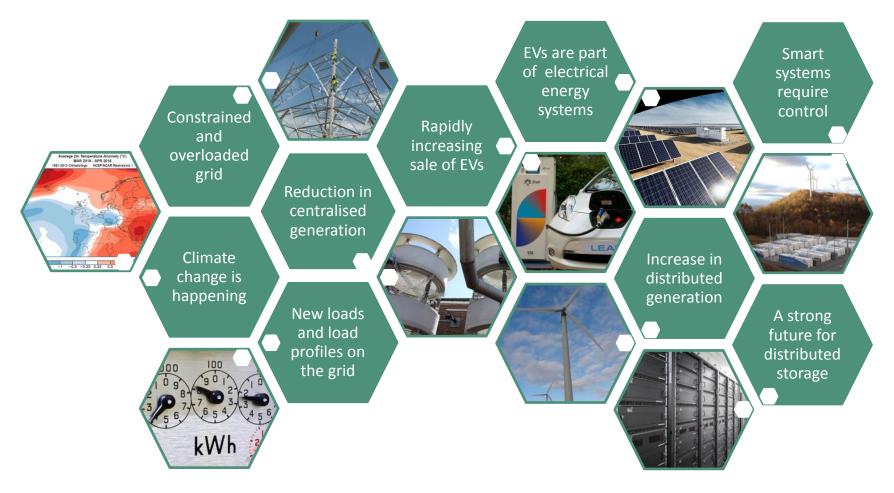
www.westernpowerinnovation.co.uk



NEXT GENERATION NETWORKS

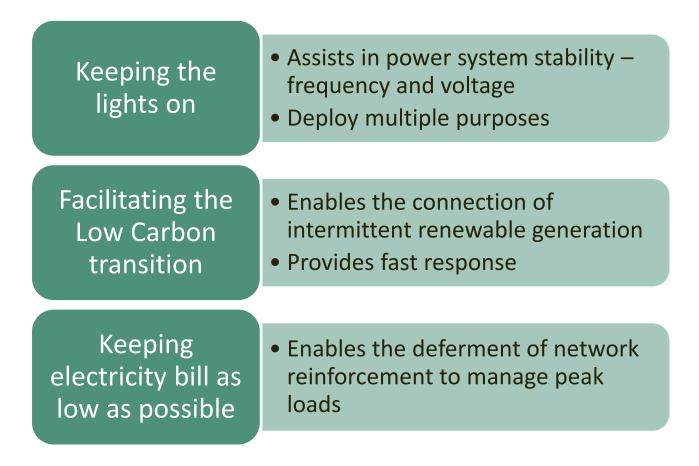
Energy Storage Balancing Act Conference Thursday 11th May 2017

Faithful Chanda Innovation & Low Carbon Networks Engineer

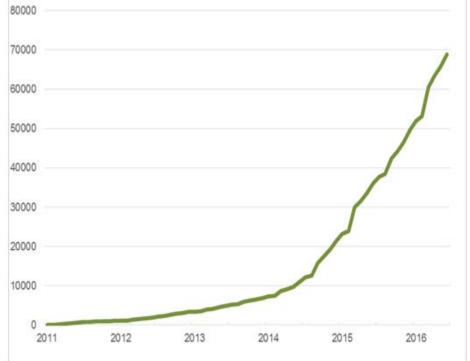


Note: 1 – Funded by Aerospace Technology Institution; Note 2 – Funded by the Energy Systems Catapult

Context


Network Issues

Why are we interested in Storage?



A typical demand increase in EVs

- From the start of data collection (Q2, 2012) the cumulative Electric Vehicle (EV) data shows a sustained and dramatic growth of the EV car and van market
- In Q2, 2012, there were 3,000 registered EV's on the road
- By Q2, 2014, this had rose to over 10,000
- After this time there was exponential growth

• The latest results Q3, 2016, shows 90,000 registered EV's

The future strategy for managing the grid

In order to cope with the increase in demand for electric vehicles, the grid can do one of three things:

- Introduce more capacity to the grid through generation and expand the networks capacity
- Introduce more flexible generation in order to deal with spikes seen from chargers
- Introduce local storage to greatly reduce the demand spike by using storage to deal with the ramp up of power

Option 3 is the most cost effective for the network as options 1 & 2 both require the local, and eventually, the national network to be upgraded in order to handle the capacity increase / capacity potential.

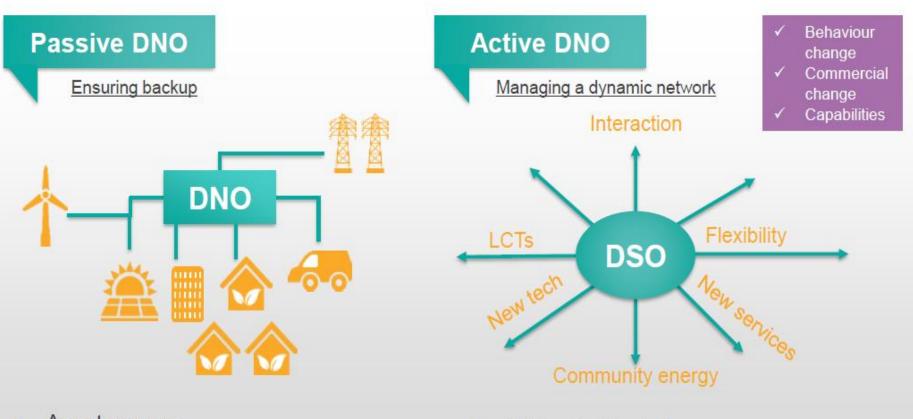
Government's response

- £30m for UK electric, hybrid, hydrogen and biomethane buses (*Electric Vehicle charging Newsletter August*, 2016).
- West Midlands Travel, £3m to fund 10 hybrid and 19 fully electric buses, and install electric charging facilities.
- Birmingham City Council and Transport for London, jointly £2.8m for 42 stateof-the-art hydrogen fuel cell buses.

- Merseytravel, £4.9m for a total of 72 biomethane, hybrid or electric buses and associated infrastructure.
- Nottingham City Transport, £4.4m for 53 biomethane buses and infrastructure.

Storage

Solar Storage **FALCON I&C Storage** Connect&Manage SoLa BRISTOL


Our response – WPD Innovation Projects

DSO Flexibility from Energy Storage

	•	Solar Storage	
		✓ Co-location with Solar DG.	Grid
		 Testing revenue stacking conflicts and optimisation 	Scale
	•	FALCON	
		✓ Assessment of DSO owned storage	
		 Technical and Commercial insight 	
	•	I&C Storage	
		 Co-location with larger demand customers 	
		 Connection design options and DSR services 	
-	•	SoLa BRISTOL	
		✓ In-home storage plus PV. DC networks. Community	
		microgrid optimisation.	
	•	Connect and Manage	
		 Integration of domestic storage (connection options) 	
		 DSR revenue stacking and smart grid integration 	
			Domestic

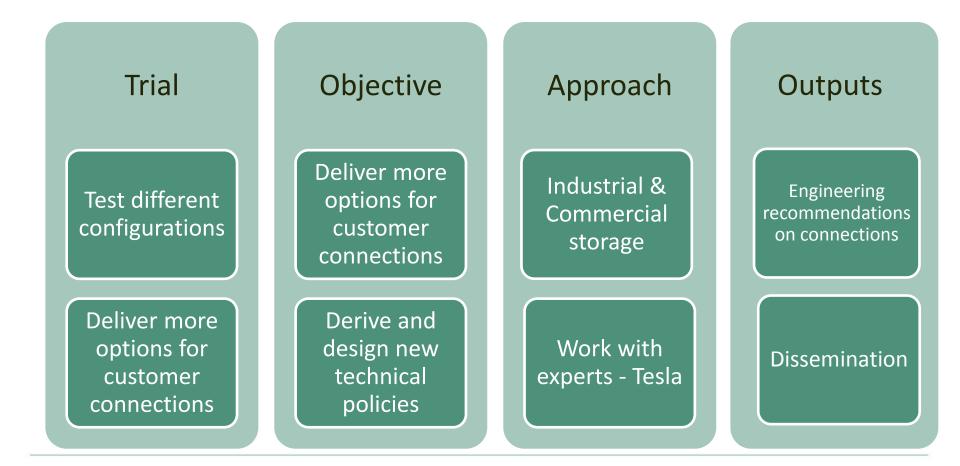
Transition from DNO to DSO

- Asset owners
- Incremental / targeted at issues

- Facilitate distributed energy resources
- Whole system consideration

Distribution System Operator (DSO)

- A Distribution Network Operator (DNO) provides a network sized to support times of maximum demand and/or generation output. It is sufficiently large to enable the GB Market to consider it having infinite capacity.
- A Distribution System Operator (DSO) exploits ICT to deliver a network that makes optimal use of capacity:
 - ✓ Smarter network solutions (eg. DAR; ALT, Meshing, ANM, Intertrips)
 - ✓ Non-network solutions (eg. DSR, DG, Storage, Reactive Power Services)
- DSO roles will include:
 - ✓ Modelling, managing, contracting and dispatching power and energy flows
 - ✓ Brokering ancillary services
 - ✓ Local and regional network balancing and congestion management
 - ✓ Relationship with the GB SO: Coordinate operations and provide services
 - Become a platform for energy suppliers, communities and other market participants to have visibility of network congestion in order to facilitate optimal DG and DSR solutions


Increased network visibility, advanced control systems and data analytics will allow the DSO to predict energy volumes and despatch flexibility services

Industrial & Commercial Storage Project

In our own depots/sites

Trial sites

Roof top PV mounted installations

Different Sizes of PV

- Already installed in the depots/sites
- Cardiff 8kW

STERN PO

INNOVATION

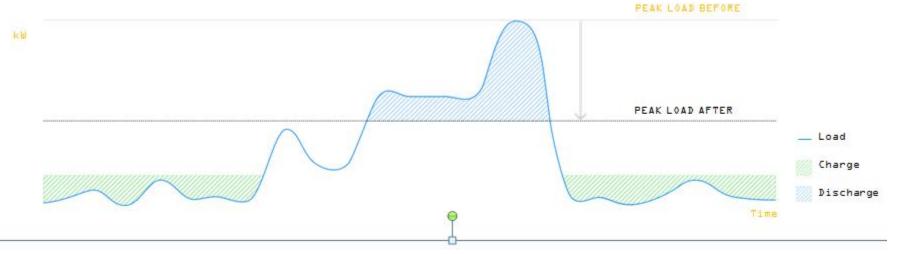
- Taunton Two arrays of 50kW & 6kW
- Boston 21kW
- Spilsby 30kW

Contract & Procurement

- Project Partner: Tesla
- 4 systems of 50kW/210kWh each
- 4 * 1 Inverter
- 4 * 1 Powerpack
- 4 * Site Master Controller
- Battery Management System
- DC and Communication Cable Harnesses
- Delivery to sites in the UK in Q2 2017
- 10-year system warranty

TESLA POWERPACK INVERTER

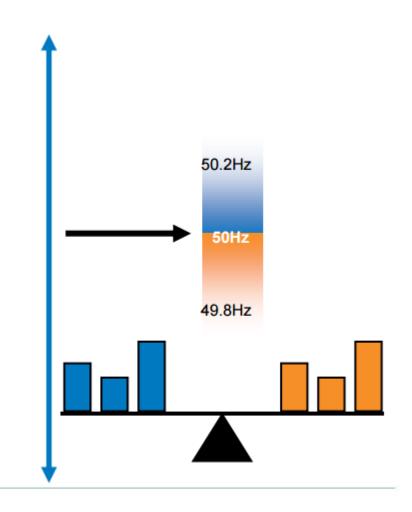
Application: Peak Shaving


- Spilsby Vale Road
- Planned size: 50kW/210kWh
- Requirements:
 - ✓ Load profile available
 - ✓ Peaky load profile
 - ✓ Site Meter
 - ✓ Free switchgear suitable for 80A connection
 - ✓ approx. 3.6 m x 3.3 m outdoor

Peak Shaving

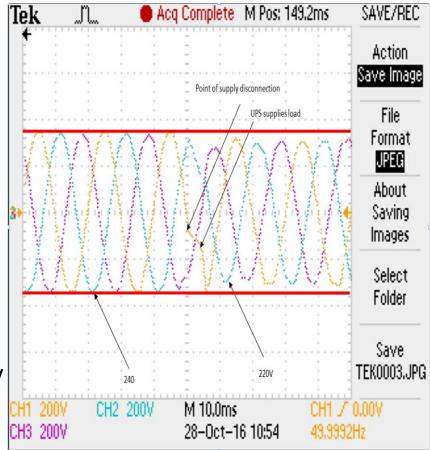
Application: Active control by WPD

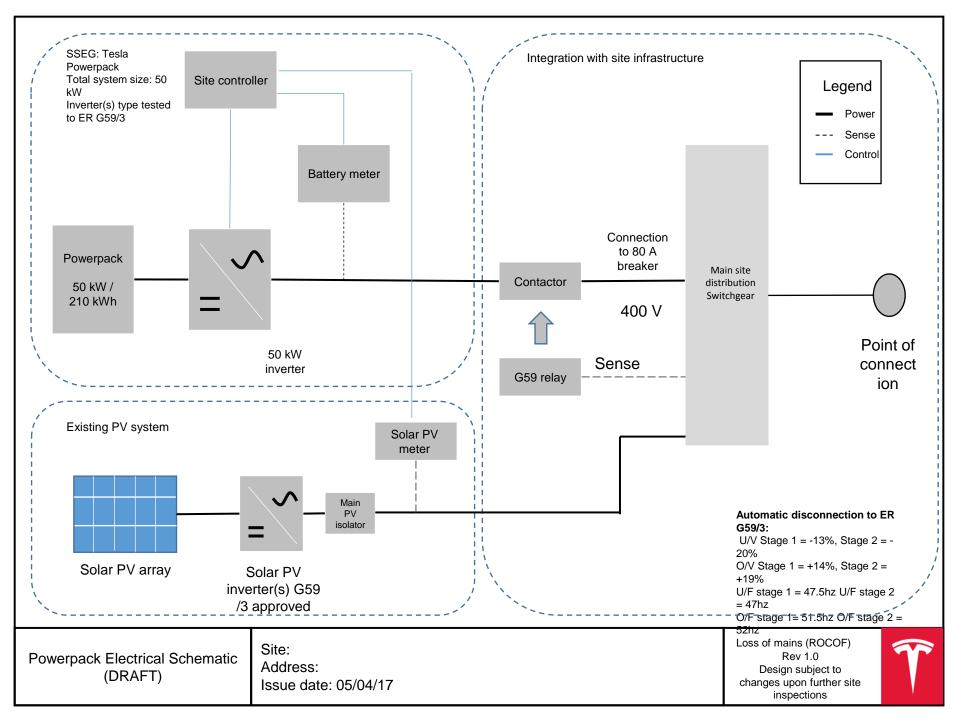
- Boston Endeavour Park
- Planned size: 50kW/210kWh
- Requirements:
 - ✓ Site Meter
 - ✓ Interface between WPD control and Tesla Powerpack
 Controller
 - ✓ Free switchgear suitable for 80A connection
 - ✓ approx. 3.6m x 3.3m outdoor



Application: UK "standard" battery storage approach

- Cardiff Lamby Way
- Combination of: FFR, DUOS and TRIAD avoidance
- Planned size: 50kW/210kWh
- Requirements:
 - ✓ Load profile available
 - ✓ Site Meter
 - ✓ Free switchgear suitable for 80A connection
 - ✓ approx. 3.6 m x 3.3 m outdoor
 - ✓ Question: Real market access or simulated?





Project 4

Application: Test Bed (Backup, PV interaction, etc.)

- Taunton Priorswood Industrial Estate
- Planned size: 50kW/210kWh
- Requirements:
 - ✓ Site that allows for back up tests (connection into a sub-section of a site that facilitates on/off switching)
 - ✓ PV inverters facilitate frequency dependent power control
 - ✓ Site Meter
 - Switchgear allowing for back-up relay
 & 80A connection
 - ✓ approx. 3.6 m x 3.3 m outdoor

Progress so far

- Tendering Completed
- Procurement In progress
- Design Started
- Site surveys Ongoing
- G59 ENA Connection Application Offered
- Construction Not started
- Installation & commissioning Not started
- Tests and experiments under development
- Dissemination WPD events/LCNI
- Project finishes December 2018
- Closedown Report

In general we can use the Tesla Powerpacks for....

- Grid Support
- **Energy Management** Uninterruptible Power **Supplies** Energy Grid support Management 1. Load Shifting 1. Bulk Energy 2. Voltage support Trading Uninterruptible 3. Stability 2. Arbitrage **Power Supply** 4. Peak shaving 1. Emergency backup Grid support 2. Power Quality 1. Primary & Secondary reserve 2. Black Start 3. Load following/levelling

What we may learn from the project

I & C Storage Project will explore.....

Going forward

2

3

4

Through innovation and other avenues

We will seek and develop flexibility services through our projects

We will continue to collaborate with government and the regulator on addressing regulatory challenges

We will work with the System Operator to improve our interface

We will always seek to lowest cost solution for our customers using market solutions wherever feasible

NEXT GENERATION NETWORKS

Energy Storage Balancing Act Conference Thursday 11th May 2017

Mark Dale Innovation & Low Carbon Networks Engineer

Solar Bristol Partners

Bristol City Council

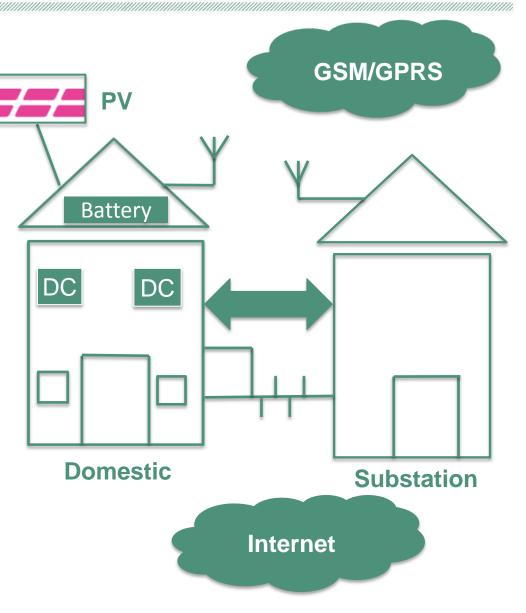
 Deploying technology at their sites, engaging with schools and offices

Knowle West Media Centre

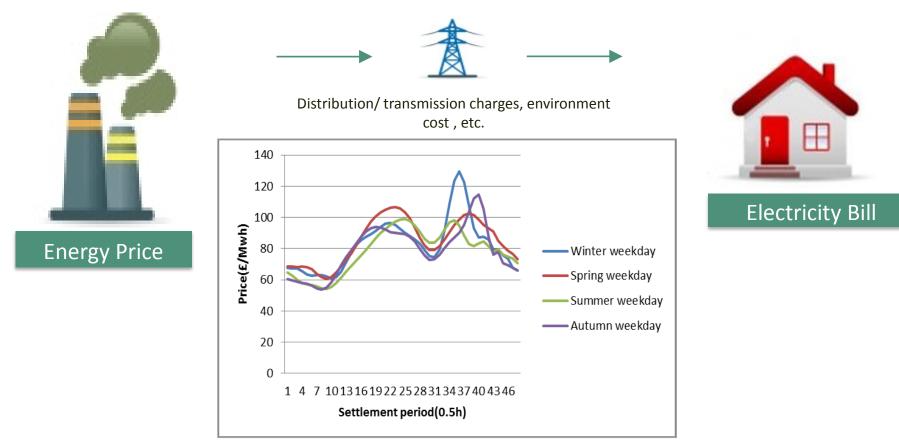
 Leading the domestic properties engagement

Siemens

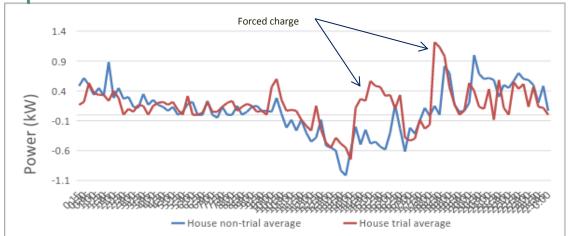
- Designing and developing technology for the project
- University of Bath
 - Academic partner, Knowledge dissemination, tariffs and design


SIEMENS

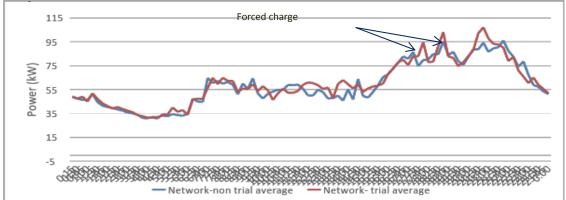
Domestic Arrangement


- 26 Domestic Local Authority homes with Battery storage linked to PV Panels. 24v DC lighting throughout.
- PV Panels on roof can charge the battery using excess PV generated electricity.
- Battery runs the 24v DC lighting in the home
- Battery can export if required at high demand periods to support the electricity network.

Smart Tariffs Design (Battery Storage)



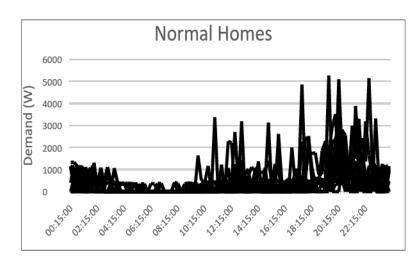
Half hourly domestic tariff to reflect the cost of electricity generation over a 24hr period will enable customers to maximise the benefits of energy storage.



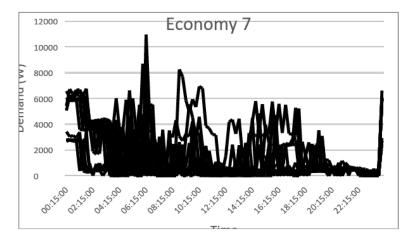
Impact to Demand from Forced Battery Charging and Discharging

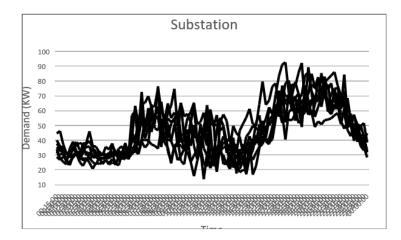
Impact to house demand

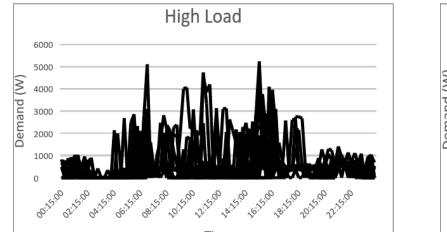
Impact to network demand

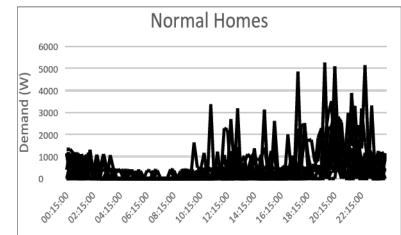


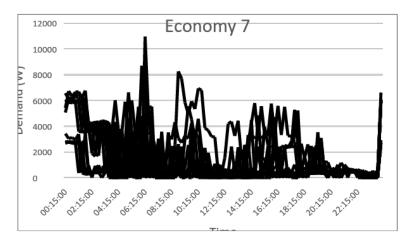
- Batteries were forced to charge between 2.30pm – 4.30pm & 6.15pm – 7pm
- Forced discharge was between 5pm – 6.15pm
- This can be seen in the house demand profile quite clearly
- Impact on the network is not so clearly defined, due to the sample size (4.3% of customers had batteries) and the varied nature of the overall substation demand profile
- In order to see a significant impact on network demand, it is estimated that you would need 60% - 70% of customers on a substation to have this solution.

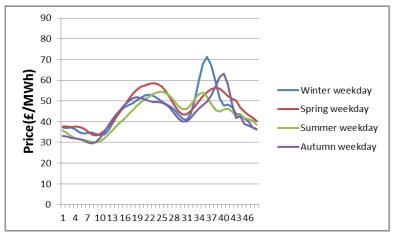



Load Profiles Over time


Charging/discharging settings need to be tuned to customers load profiles.





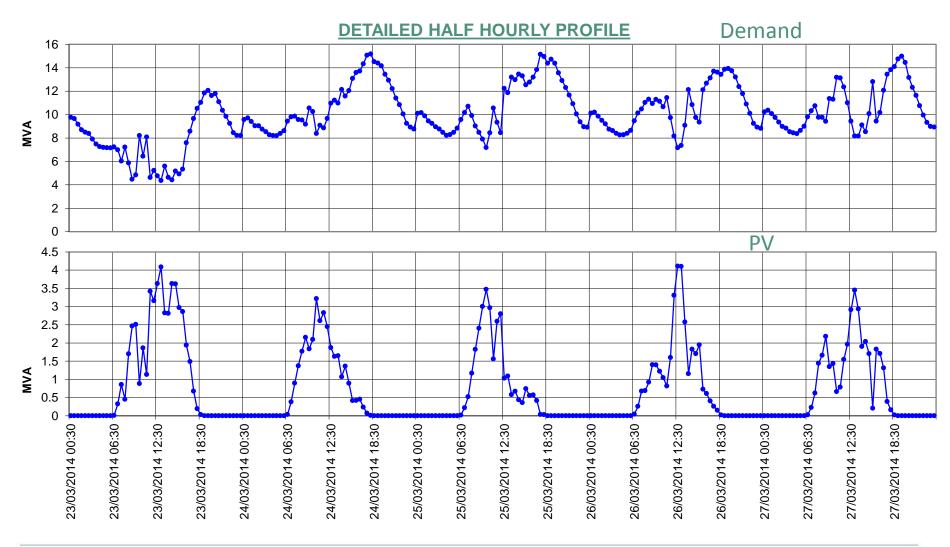

Load Profiles Over time

Charging/discharging settings need to be tuned to customers load profiles.

Solar Storage Description

- Techno-economic trial of a real battery energy storage system on a large solar generator's side of the meter, in Somerset.
- Quantify benefits for both the DNO and Customer with real data.
- WPD South West & 2 other project partners:

- What will be the benefits of generator connected storage?
- Explore routes to market challenges and rewards.
- Making the case for energy storage in new connection offers.
- Registered under NIA in April 2015



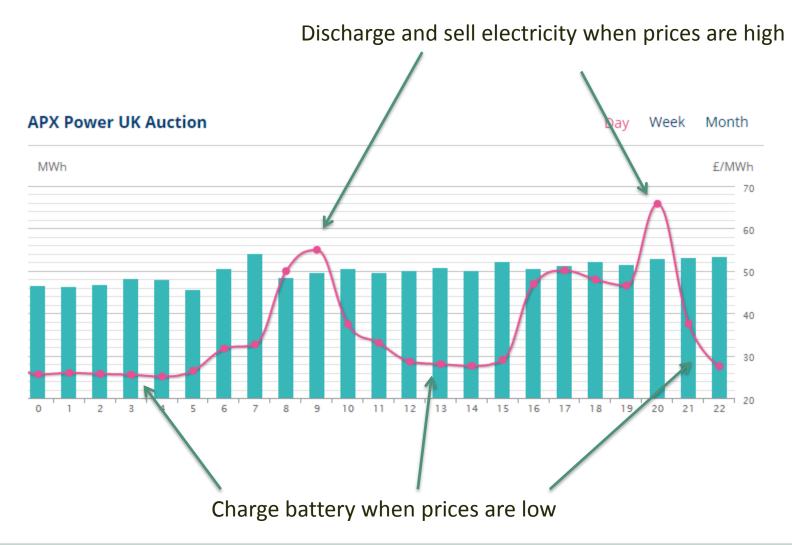
Site Installation

Technical Challenges – Daily Profiles

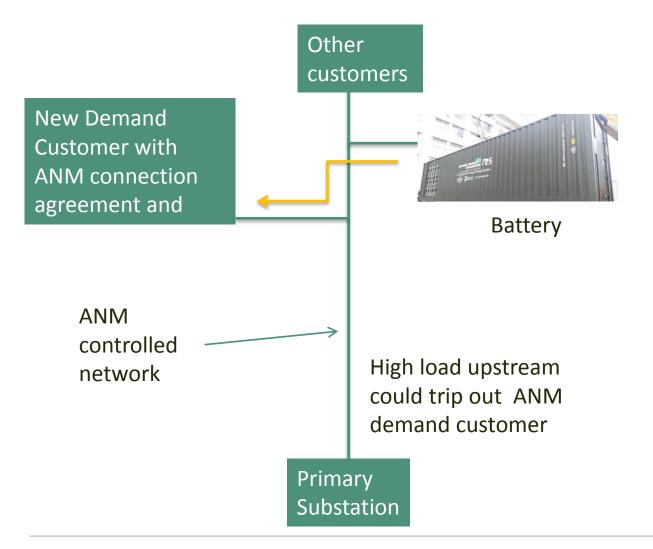
Business Challenges

- High demand for renewables connections in the South West.
- Renewable generation does not match peak local demand.
- Renewable generation has high ramp rates and is very `spikey'.
- Network capacity built for worst case scenarios and operated within conservative limits.
- Power quality management is not currently provided by renewables operators (other than specifying a power factor).

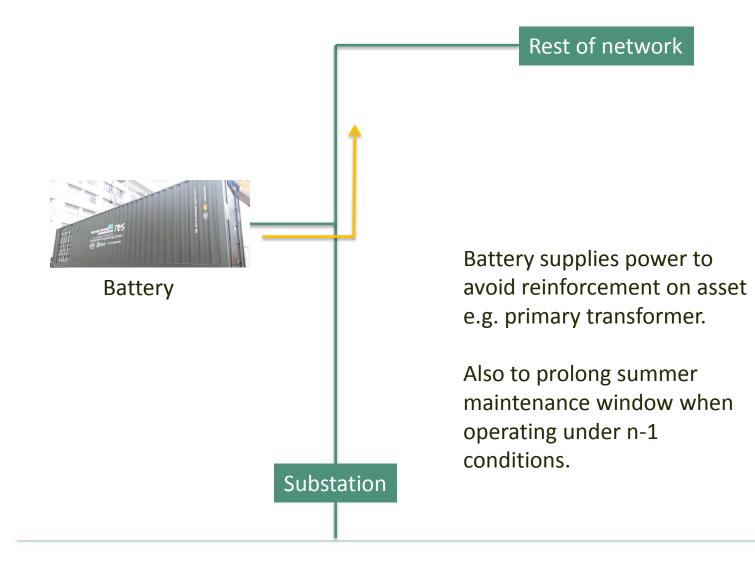
Storage has been calculated to offer £60k/MVA/year of benefits to distribution networks alone - how can these benefits be made commercially realisable by DNOs?


Solar Storage Usage cases

Usage Case	Beneficiary	
1) Sell electricity for a higher price per kWh	Owner	
2) Local demand peak lopping.	DNO / load customer	
3) Peak lop network demand.	DNO	
4) Raise minimum demand to limit voltage rise.	DNO	
5) Voltage control via reactive power.	DNO	
6) Peak lop generation to build bigger solar parks.	Owner	
7) Smoothing / Power Quality.	DNO	
8) Change peak lopping level (glass ceiling).	DNO	
9) Multiple storage system control	DNO	


Use Case 1: Arbitrage

Use Case 2: Local Demand Peak Lopping



ANM Demand customer contracts with Battery to generate when soft inter-trip signal received or on timed schedule based on forecasts) Limits upstream current and avoids being tripped off.

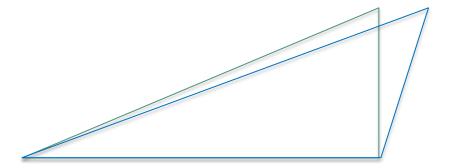
Use Case 3: Peak Lop Network Demand

Use Case 4: Raise minimum demand to limit voltage rise

Battery

Voltage rise on networks with embedded DG can be an issue at times of minimum demand. The battery can be charged to help keep voltages under limits.

Rest of network

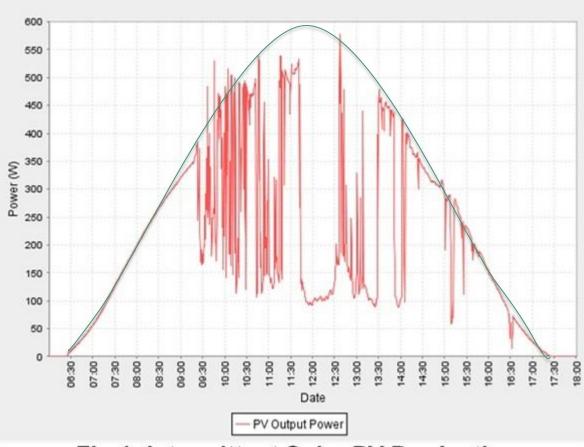


Use Case 5: Voltage control by reactive power

Battery

Battery inverters can alter the degree of reactive power that is delivered, and hence alter the voltage.

Use Case 6: Peak lop generation



Maximum generation exceeds connection export limit

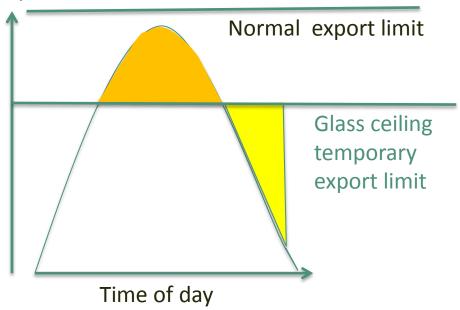
Export In summer months, generation exceeding the export capacity can be stored for export later in the day Export limit In winter months export limit may not be exceeded , storage can be used for other services.

Use Case 7: Smoothing – Power Quality

Using storage to compensate for reduction of PV due to clouds can create a smoother export profile, improving forecast reliability and avoiding step changes.

An issue to consider is whether improving the predictability of the PV output is at the cost of having greater unpredictability of storage assets, which may also have rapid step changes in their output if providing frequency response services.

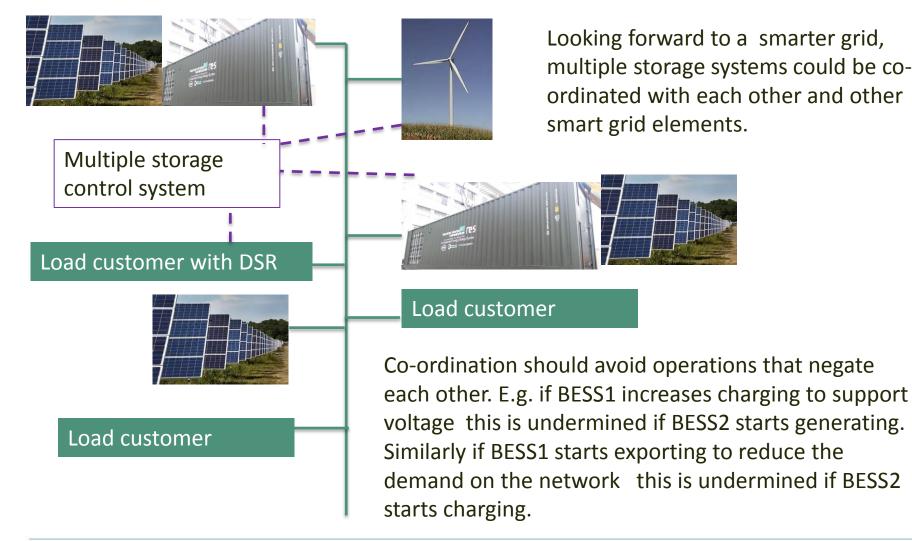
Fig 1: Intermittent Solar PV Production



Use Case 8: Glass ceiling

Maximum generation exceeds temporary export limit

Export


At the request of a DNO operate to a lower export limit than normal.

This could allow for more sophisticated real time control by the DNO to ensure system stability. The height of the glass ceiling could have a set level or be communicated by the DNO.

Use Case 9: Multiple Storage system control

Looking forward to a smarter grid, multiple storage systems could be coordinated with each other and other smart grid elements.

Combining Use Cases

Multiple use cases can be performed in a day.

Use cases can be carried out sequentially but it may be that the same action supports more than one use case.

e.g. battery charging may provide the store of energy required for arbitrage while at the same time providing a voltage reduction service for the DNO.

Early Learning/Issues

- String Imbalance There is an ongoing issue where the 4 battery strings drift apart and cause the BMS to override the programmed schedule in order to prevent the battery breaching the 90%/10% operational limits.
- There needs to be a contractual clause linked to % imbalance between strings that covers this event.
- As with previous battery storage projects, SOC accuracy needs to be considered as over time this can drift. Regular re calibration may be required.
- Faulty CT gave spurious errors. Now rectified, but further work proposed to improve CT and algorithm accuracy

Current DNO Limitations

- DNOs are required to maintain the network
- They are not allowed to trade energy
- Battery vs conventional reinforcement
- When done for a connection we are obliged to offer the least cost scheme
- Current governance limits the situations when we would be able to use storage

Conclusions

- Several key questions remain open about the integration of energy storage with renewable generation on the network.
- Effective commercial arrangements and overcoming legislative barriers are key, as well as improving technical and economic performance.
- Solar Storage aims to answer these questions by under taking a real world trial, usage cases, producing real data, informing the commercial position.
- At present we do not see WPD as owner operators of large scale storage. We expect an increasingly open market from which to procure Network and/or flexibility services, but believe DNOs should be the storage / flexibility service provider of last resort where the market can't meet requirements.

Project Timeline

Activity	Timeframe
Installation & Site Acceptance Testing	Completed October 2016
Battery operation – Use case demonstration	October 2016 – Jan 2018
Third party review of testing by National Solar Centre	May/Jun 2017
Evaluate potential for auction	Aug/Sep 2017
If required, Battery removal	Jan/Feb 2018
Analysis of data	April 2017 – Feb 2018
Dissemination of results	March 2018

THANKS FOR LISTENING

WESTERN POWER DISTRIBUTION

Serving the Midlands, South West and Wales

Faithful Chanda

Western Power Distribution

Innovation and Low Carbon Networks Engineer 01332 827 448/ 07595 434811 fchanda@westernpower.co.uk

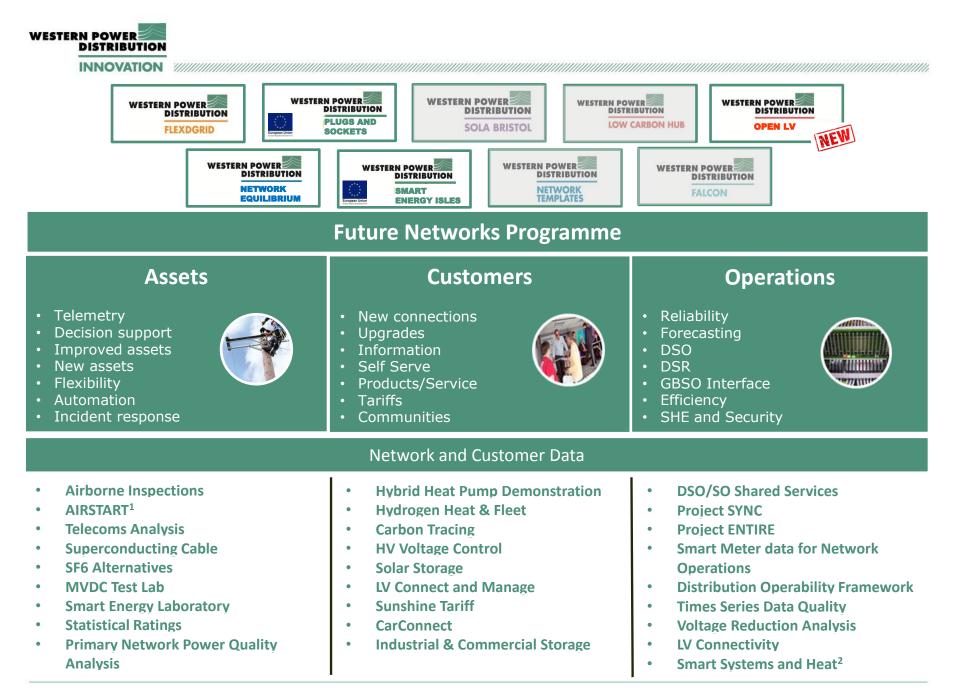
Mark Dale

Western Power Distribution

Innovation and Low Carbon Networks Engineer 0117 933 2236/ 07703 194687 mdale@westernpower.co.uk

wpdinnovation@westernpower.co.uk

www.westernpowerinnovation.co.uk


NEXT GENERATION NETWORKS

Alternative Connections

Balancing Act Conference 11th May 2017

Steven Gough Innovation & Low Carbon Networks Engineer

Note: 1 – Funded by Aerospace Technology Institution; Note 2 – Funded by the Energy Systems Catapult

Presentation Overview

Steven Gough:

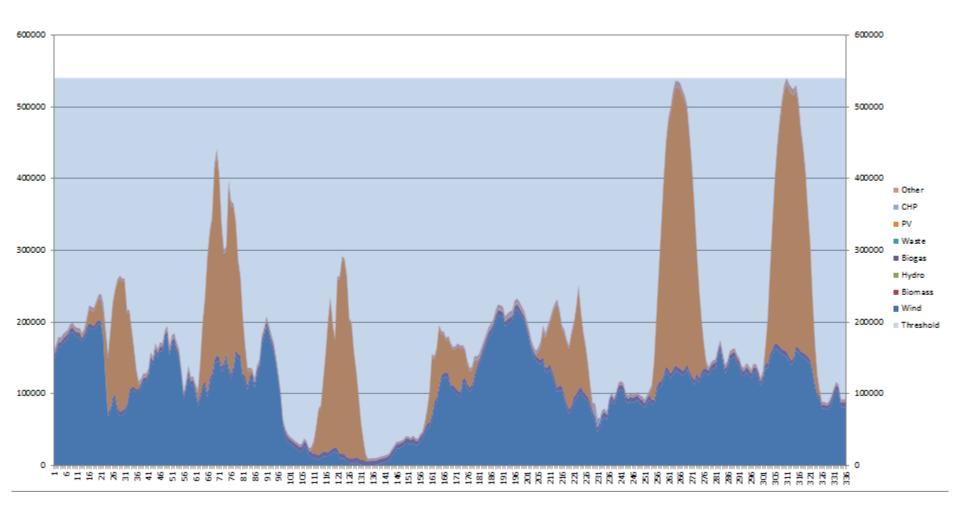
- Alternative connections background
- New developments

James Bennett:

• Fault Level derived Soft-Intertrip

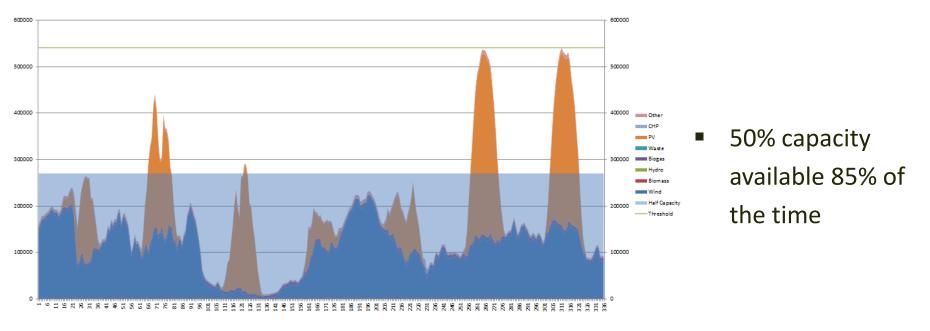
Sam Jupe:

• LV Connect and Manage



Alternative Connections

- Developed as parts of the network became 'full'
- 'Full' = Limitations from Thermal, Voltage, Protection or Fault Level
- Customers must be willing to accept some level of curtailment in return for a saving in reinforcement costs and timescales
- Level of curtailment can be fixed or dynamic
- WPD currently has four options of increasing technicality

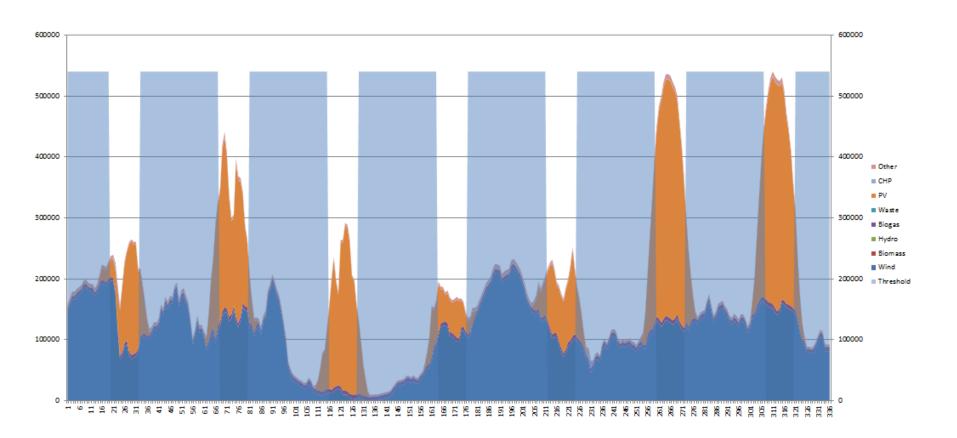


Alternative Connections

Alternative Connections

Alternative Connections – Export Limiting

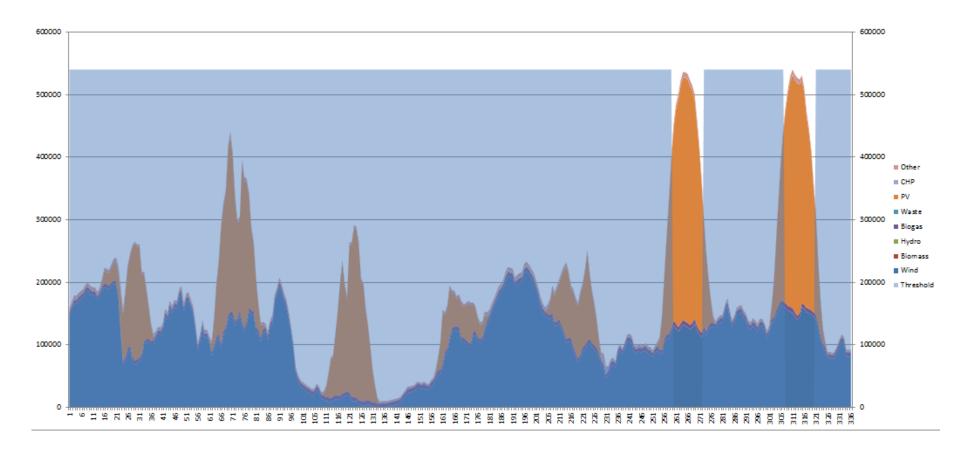
- Measures Apparent Power at Exit Point
- Uses information to restrict the generation and/or balance the customer demand in order to prevent agreed ASC being exceeded
- Suitable for all capacities & voltage levels
- Reduces generators contribution to thermal or voltage infringements (Fault Level Restrictions may still apply)



Alternative Connections - Timed

- Achievable where we have predictable load and generation patterns
- Connections will be given an operating schedule which will define times and levels of capacity available
- Typical constraint times:
 - October to March No constraint
 - April and September Constrained 30% output 10am to 4pm (no constraint outside of these hours
 - May to Aug Constrained 0% output 10am to 4pm (no constraint outside of these hours
- Method of curtailment provided by WPD or customer
- Suitable for sub 1MVA generation installs at 11kV

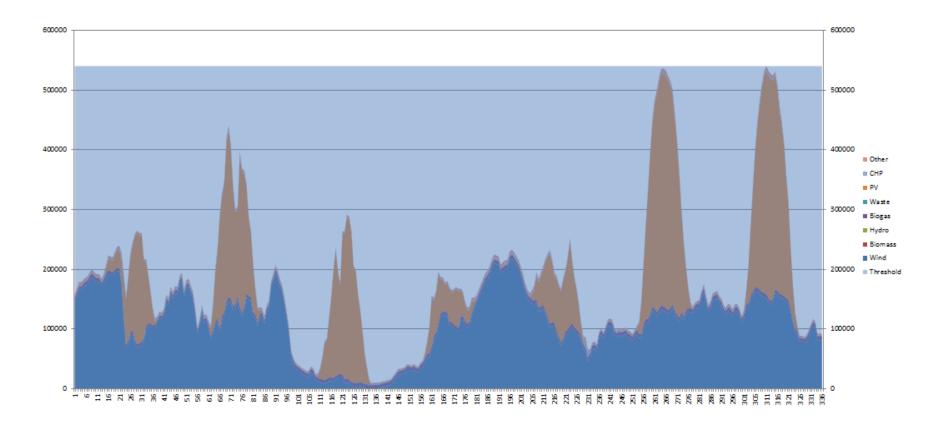
Alternative Connections - Timed



Alternative Connections – Soft-Intertrip

- Network Constrained by a single upstream asset requiring reinforcement
- Through monitoring these conditions using the network management system, further capacity can be released when these limits or assets are within normal operating parameters
- On-site WPD RTU issues two stages of constraint 30% total output and 0% total output
- Suitable for all generator applications connecting at HV or with an export level of 250kW and above
- Limited participants per area
- Can monitor Transformer Reverse Power, (N-1) Constraints, Voltage Constraints, Thermal Constraints

Alternative Connections – Soft-Intertrip



Alternative Connections – ANM

- 'Active Network Management'
- Multiple complex constraints affecting a number of customers
- Distributed control systems continually monitor all limits on the network then allocate the maximum capacity to customers in that area
- New ANM 'Zone' being rolled out every six months with a view to making the whole network available for customers to apply for an ANM connection by 2021

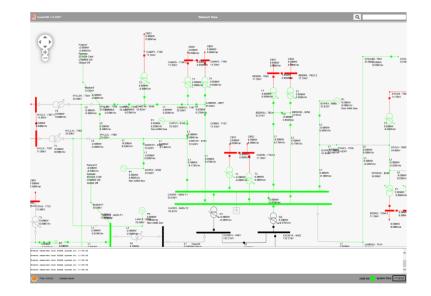
Alternative Connections – ANM

ANM Background in WPD

- WPD's Innovation Strategy (part of ED1 business plan) outlines the zones:
- The development of ANM was prompted by increasing areas of the WPD network triggering very high reinforcement costs or long timescales for new connections
- The plan is to role ANM out to the entire network

GSP Group	Active BSP Group	Quoting form	Building during
Bicker fen	Skegness	Active	Active
Grendon	Corby	Active Apr-16	Active
Grendon	Northampton		Apr-17
Pridayatar	Bridgwater	Active	Active
Bridgwater	Street		Active
West Burton	Horncastle	Active	Active
Indian Queens	Truro	Active	Nov-16
Swansea North	Swansea	Nov-16	Nov-17
Pembroke	Pembroke	Nov-16	Nov-17
Cellarhead	Meaford	Apr-17	Apr-18
Rassau	Abergavenny	Nov-17	Nov-18
Feckenham	Feckenham	Apr-18	Apr-19
Berkswell	Warwick	Apr-19	Apr-20
Bishops Wood	Hereford	Nov-19	Nov-20
Pyle	Pyle	Apr-20	Apr-21
Remaining GSPs		Jan-21	Nov-21

ANM suppliers


We have a framework agreement with three suppliers:

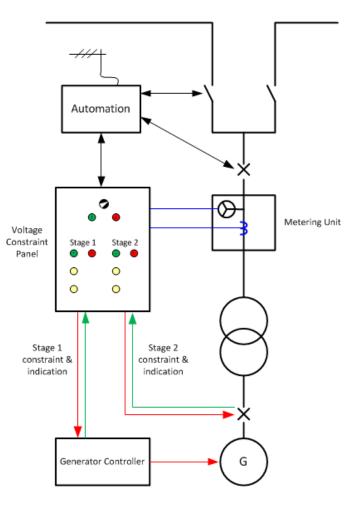
- Smarter Grid Solutions for simple topologies
- CG Automation for more complex topologies
- GE for more complex topologies

The framework contract will be reviewed after 3 years where it may be extended for 2 years or a new framework tender will be issued.

How Alverdiscott/Indian Queens is different to the other zones

- All other ANM zones are provided by SGS except Alverdiscott/Indian Queens.
- This zone is provided by CG Automation, the provider of the of the Generator Constraint Panel.
- The system is has 'Load Flow in the Loop' making it more versatile the complex network in Alverdiscott/Indian Queens.
- This means there is closer integration with PowerOn.

10



Significance of 'Load Flow in the Loop'

- 'Load flow in the loop' means a Load Flow Engine is included within the system. In this case it is Ipsa.
- The system takes data from the PowerOn over an ICCP link, runs a load flow, from the results from the load flow curtails the generators
- Load flows are run every 10 seconds
- It allows for unplanned abnormal running to be accommodated
- However needs a large amount of data to be kept up to date
- The modal needs to be kept up to date

New Developments

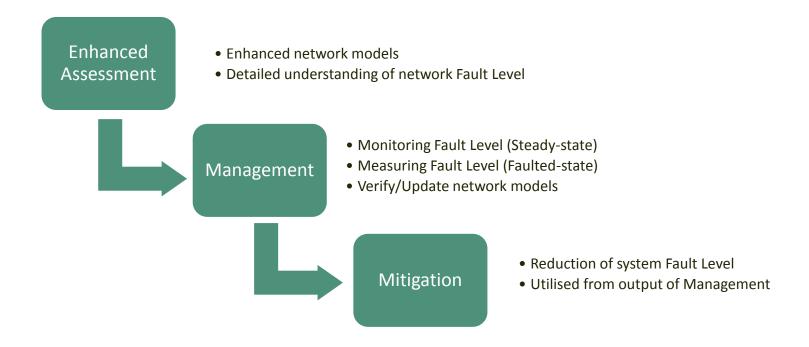
- Through the development of the generator constraint panel and the ANM system in Alverdiscott/Indian Queens the interface has been modified for controllable demand connections.
- This was extended to be able to control import and export on a single site, ideal for full control of batteries.
- We are due to trial some controlled demand connections using similar infrastructure in the coming months
- Working with various NIA projects to incorporate commercial elements to ANM

10

NEXT GENERATION NETWORKS

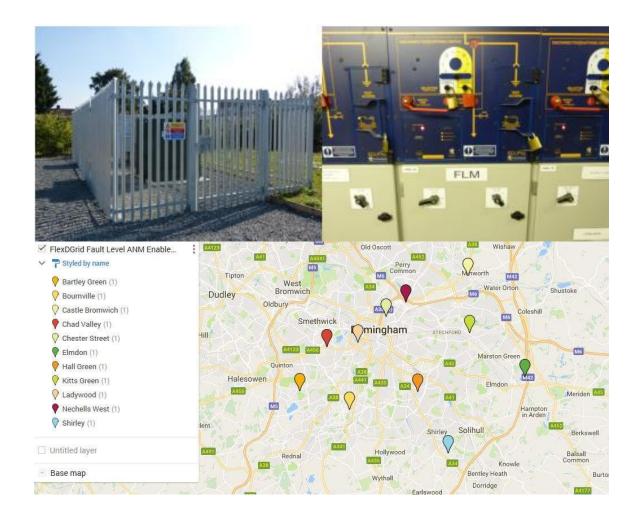
Alternative Connections – Fault Level

Balancing Act Conference 11th May 2017



James Bennett Innovation & Low Carbon Networks Engineer

Alternative Connections – FlexDGrid Fault Level

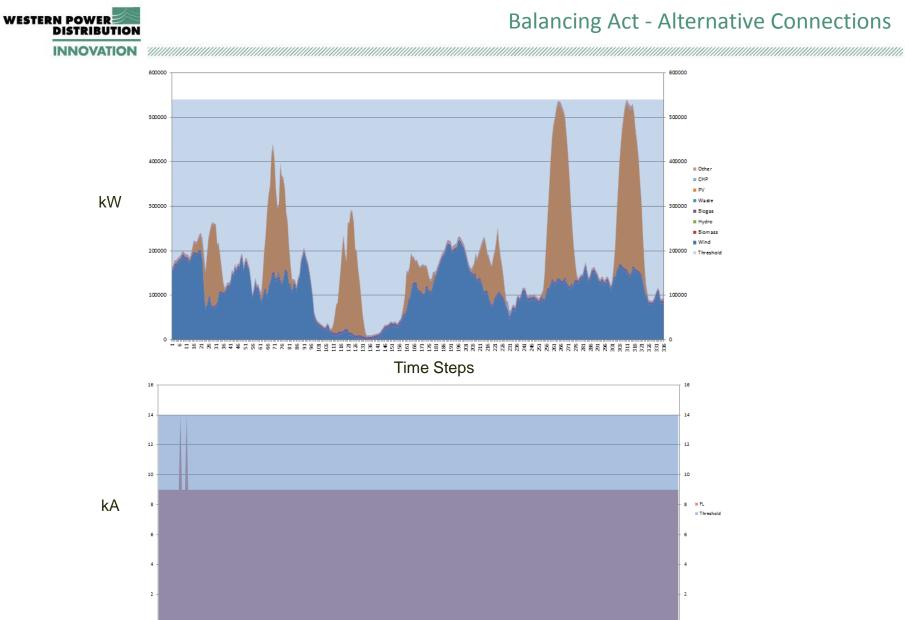

What is FlexDGrid? – Tier 2 Innovation Project recently completed March 2017

Alternative Connections – FlexDGrid Fault Level

Alternative Connections – FlexDGrid Fault Level

Key Aims

- Use the Fault Level Monitoring data to provide 'Quicker & Cheaper' connections for customers currently restricted by Fault Level constraints
- Ensure any solution is easy to roll-out to both customers and the business. Both commercially and operationally
- Trial with a customer


Alternative Connections – Comparisons to Existing

Limitations

- Constraints not seasonal or have any patterns
- Export can not be limited Must be totally disconnected
- Measurements not 'Real-Time' in the true sense
- No fall back protection operation

Strengths

• Periods of potential curtailment known in advance

0

Balancing Act - Alternative Connections

Fault Level – Potential Solution

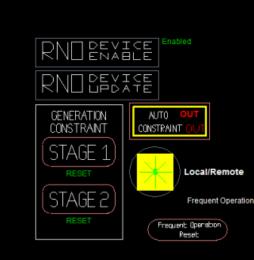
ANM

- Ideal scenario
- Lack of true 'Real-Time' data makes conventional implementation not possible
- Costs associated with full ANM integration ruled it out as part of the project
- However, Fault Level Soft-Intertrip principals will need integrating in to ANM to cater for the possibility of both Fault Level and thermal constraints

Fault Level – Proposed Solution

Soft-Intertrip

- Simpler & Cheaper installation
- Existing Soft-Intertrip coding can be altered internally to include an operator in the loop for the final decision



Fault Level Soft Intertrip - Development

Systems Integration

- Routed FLM data in to the WPD corporate network
- Created FLM PoF interface
- Developed 'On-Demand' Intellirupter control
- Re-configured Generator Constraint Panel

Fault Level Soft Intertrip - Development

Trial Customer

- Nechells West
- Existing on –site Fault Current Limiter at the end of its useful working life. Two large CHP & One 800kVA Gas Generator
- Interested to understand the impact on their business
- Installed solution up to the generator to prove and provide visual indication

Fault Level Soft Intertrip -

Trial Customer

• Off-Line calculations to establish thresholds

FLM Value (kA)	Mitigating Actions
≥12.705	No Acceptable Mitigating Actions Available
12.190 to 12.704	800kVA Gas Generator Disconnected 4.7MVA CHP Disconnected Bus-Section Z-Y Open
10.675 to 12.189	4.7MVA CHP Disconnected Bus-Section Z-Y Open
≤10.674	Bus-Section Z-Y Open

Fault Level Soft Intertrip -

Trial Customer

• Curtailment

Mitigating Action	Av. No. of Actions per Year	Average Length of Action (Minutes)		mes When be Required
800kVA Gas Generator Disconnected	1.16	2	0.20	2.30pm to
4.7MVA CHP	2.52	3	9.30am	4.30pm
Disconnected	2.52			

Costs

FLM Solution = £91k

Conventional = Approx. £300k & Three Years

• Updated policies, offer letter, connection agreement and curtailment studies



NEXT GENERATION NETWORKS

Alternative Connections LV Connect & Manage Balancing Act Conference 11th May 2017

Samuel Jupe MEng PhD CEng MIET Network Innovation Manager, Nortech Management Limited

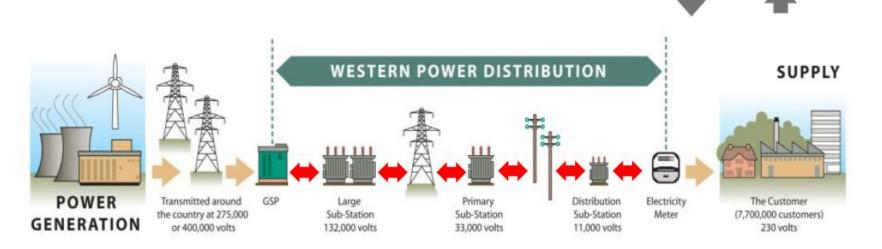
Note: 1 – Funded by Aerospace Technology Institution; Note 2 – Funded by the Energy Systems Catapult

LV Connect and Manage

Overview

- 1. Project Outline
- 2. Objectives
- 3. Progress to Date
- 4. Next Steps

LV Connect and Manage


Project Outline

• £1.7m project

WESTERN POWER

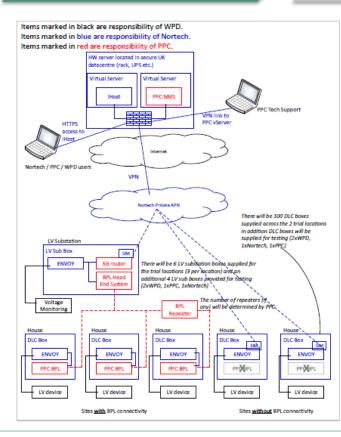
DISTRIBUTION

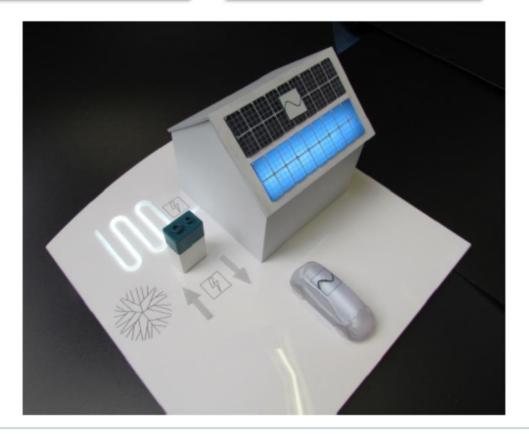
- Accelerate connection of LCTs (storage, EVs, heat pumps)
- Bi-directional power flow control via "Domestic Load Controller" (DLC) hardware

Objectives

The project objectives are to trial and demonstrate:

- 1. Broadband over powerline (substation to customers' homes)
- 2. ANM solutions with intelligence distributed into the LV network
- 3. ANM solutions, as a short or long term alternative to network reinforcement
- 4. New business processes, based on proven, off-the-shelf technology, which can be quickly and cost effectively deployed





Modelling

Monitoring

Mitigation

Modelling

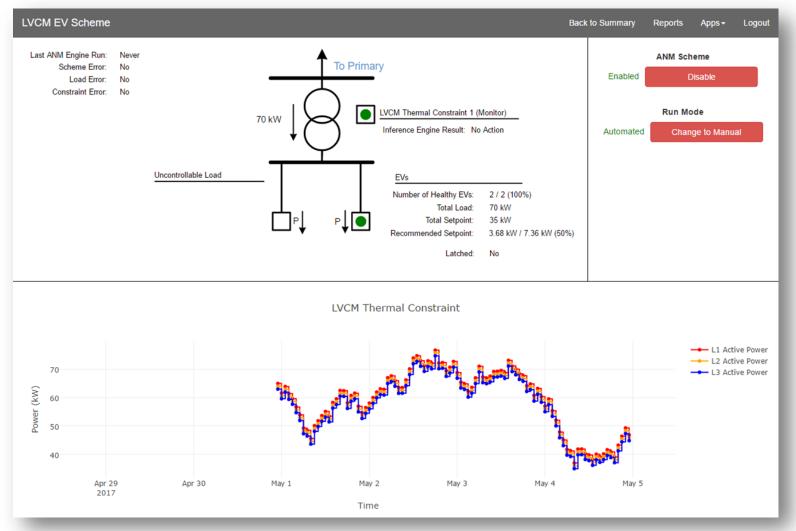
Monitoring

Mitigation

LV Substation

Domestic PV + Storage

Modelling


Monitoring

Mitigation

Next Steps

- 1. Commission demonstrator
- 2. Customer engagement
- 3. Deploy and trial solution
- 4. Develop policies for Business-as-Usual adoption

LV Connect and Manage

Summary

- 1. Project Outline
- 2. Objectives
- 3. Progress to Date
- 4. Next Steps

THANKS FOR LISTENING

WESTERN POWER DISTRIBUTION

Serving the Midlands, South West and Wales

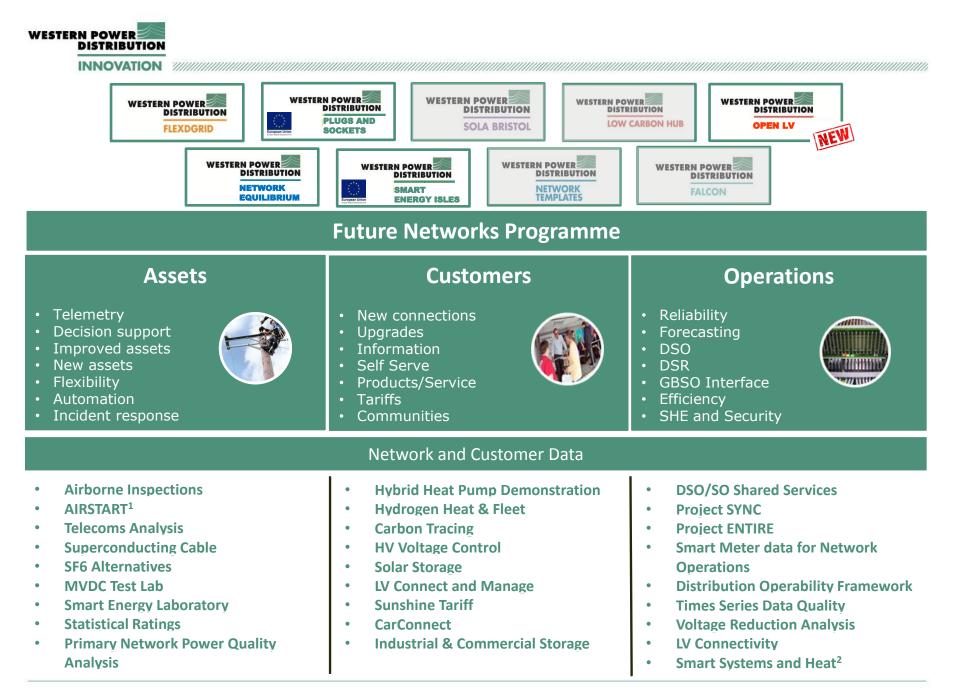
Steve Gough Western Power Distribution Innovation and Low Carbon Networks Engineer 0117 933 2170 / 07810 054850 sgough@westernpower.co.uk

James Bennett Western Power Distribution Innovation and Low Carbon Networks Engineer 01332 827439 / 07525 241087 jbennett@westernpower.co.uk

Samuel Jupe Nortech Management Ltd Network Innovation Manager 08700 111992 / 0796688797 Samuel.Jupe@nortechonline.co.uk

wpdinnovation@westernpower.co.uk

www.westernpowerinnovation.co.uk


NEXT GENERATION NETWORKS

DSO - Data & Communications

Balancing Act Conference Thursday 11th May 2017

Jenny Woodruff, Innovation & Low Carbon Networks Engineer Gary McElroy, Infrastructure Manager

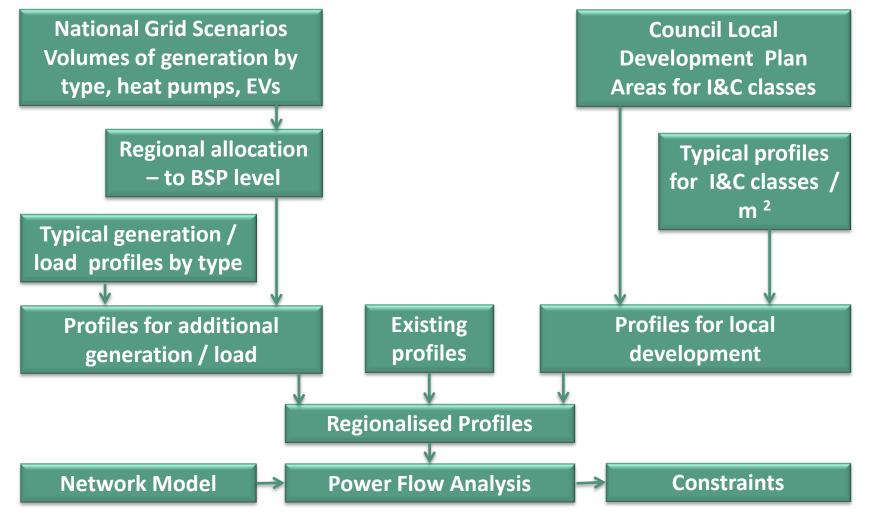
Note: 1 – Funded by Aerospace Technology Institution; Note 2 – Funded by the Energy Systems Catapult

Agenda

- Data requirements for a DSO lacksquare
- WPD projects
- Q&A
- Discussion

DSO Requirements

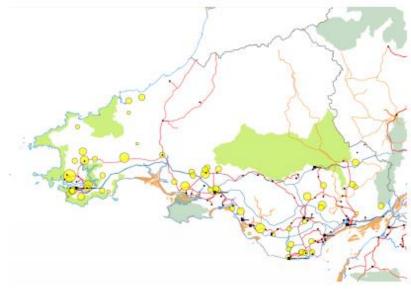
- 1. Understand the impact of potential load/ generation growth on the network.
- 2. Understand opportunities for using flexibility services
- 3. Be able to procure and execute flexibility services
- 4. Co-ordinate more effectively with third parties by sharing information
- 5. Enhance our telecoms network to enable a more actively managed network

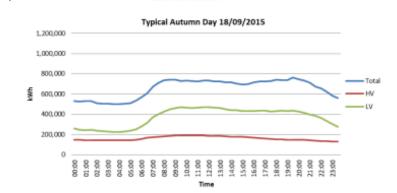

DSO Requirements

- Understand the impact of potential load/ generation growth on the network.
- 2. Understand opportunities for using flexibility services
- 3. Be able to procure and execute flexibility services
- 4. Co-ordinate more effectively with third parties by sharing information
- 5. Enhance our telecoms network to enable a more actively managed network

DSO - Data & Communications

Long Term Forecasting


Sub Transmission reports


WESTERN POW

DISTRIBUTION

Published reports should help with alignment of assumptions for other infrastructure planning.

	Rate 1 (Peak/Red) Units (MWh)	Rate 2 (Off- Peak/Amber) Units (MWh)	Rate 3 (Green) Units (MWh)	MPANs	Import Capacity (kVA)	Reactive Power units (MVArh)
Domestic	3,391,429	176,357	-	1,033,972	-	-
Other LV NHH (incl. Unmetered)	1,293,397	225,205	123,810	83,042	-	-
Other LV HH	114,045	721,339	540,284	3,997	659,615	113,950
HV (incl. LV Substation)	159,684	963,473	900,253	677	706,379	142,887
LV Generation	23,061	1,132	1,197	289	-	2,110
HV Generation	120,916	57,665	64,975	87	-	1,750
Total	5,102,532	2,145,170	1,630,518	1,122,064	1,365,994	260,697

to 2030

WESTERN POWER

Figure 6: Typical Autumn day energy usage profile

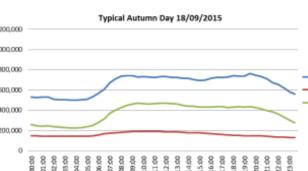
Shaping Subtransmission

South Wales – Report January 2017

Sub Transmission reports

Published reports should help with alignment of assumptions for other infrastructure planning.

	Rate 1 (Peak/Red) Units (MWh)	Rate 2 (Off- Peak/Amber) Units (MWh)	Rate 3 (Green) Units (MWh)	MPANs	Import Capacity (kVA)	Reactive Power units (MVArh)
Domestic	3,391,429	176,357	-	1,033,972	-	-
Other LV NHH (incl. Unmetered)	1,293,397	225,205	123,810	83,042	-	-
Other LV HH	114,045	721,339	540,284	3,997	659,615	113,950
HV (incl. LV Substation)	159,684	963,473	900,253	677	706,379	142,887
LV Generation	23,061	1,132	1,197	289	-	2,110
HV Generation	120,916	57,665	64,975	87	-	1,750
Total	5,102,532	2,145,170	1,630,518	1,122,064	1,365,994	260,697


Local Area **Energy Planning** using EnergyPath Networks

Typical Autumn Day 18/09/2015 1,200,000 1,000,000 800,000 ł 600,000 400,000 200,000

Figure 6: Typical Autumn day energy usage profile

Shaping Subtransmission

South Wales – Report January 2017

to 2030

WESTERN POWER

DSO Requirements

- 1. Understand the impact of potential load/ generation growth on the network.
- 2. Understand opportunities for using flexibility services
- 3. Be able to procure and execute flexibility services
- 4. Co-ordinate more effectively with third parties by sharing information
- 5. Enhance our telecoms network to enable a more actively managed network

Forecasting options evaluation

Flexibility requirements assessment

Third Party Co-ordination

Systems Requirements

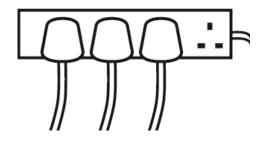
Optimal systems configuration

Implement and Test

Electricity Flexibility and Forecasting System (EFFS)

- NIC bid with AMT Sybex
- Long and short term tools
- Suppler, Aggregator, TSO involvement

DSO Requirements


- 1. Understand the impact of potential load/ generation growth on the network.
- 2. Understand opportunities for using flexibility services
- 3. Be able to procure and execute flexibility services
- 4. Co-ordinate more effectively with third parties by sharing information
- 5. Enhance our telecoms network to enable a more actively managed network

Plugs & Socket / Cornwall Local Energy Market

Platform for trading flexibility services

DNO, SO, TO, Aggregators, Suppliers, Generators connect to the "Socket" via "Plugs"

- Notify flexibility services requirements
- Flexibility service trading
- Notify use of flexibility services

centrica

national**grid**

Parallel projects working together

Plugs and Socket	Cornwall Local Energy Market
WPD Element will be NIA funded	European Regional Development Fund
Development of "D" Plug, Participation in Trial.	Development of Socket. Installing micro CHP, storage, telecoms . Academic analysis via Exeter University. Market modelling. Local Energy Market.
Expected to be under £1m (Not yet tendered for IT development work)	£19m

IPR issues around trading platform avoided.

Use cases & market models

Different market models

- Procurement style
- Spot Market
- Nodal Pricing model

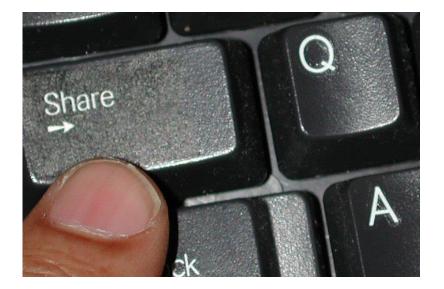
Requests

Requester	Requesting Organisation	Requester Reference	Location	Date	Time	Duration	Power	Creation Date	Creation Time	Status
buyer	buyer ltd.	RF#1	Truro	01-01-2018	08:00	2	15	20-05-2016	08:00	Pending
buyer	buyer ltd.	RF#12	Truro	01-01-2020	08:00	2	30	20-05-2016	08:00	Pending
buyer	buyer ltd.	RF#3	Truro	01-01-2019	08:00	2	25	20-05-2016	08:00	Pending
Date: 26/11/2016 Time: 16:40 Duration: 2 hours Ref: 12345			Power: 2MW Location: Truro 123456 Quality: High D-plug ref: TR-09876					Status: Quote received Submitted by: Fiona Person Submitted: 12/08/2017 13:15		
Time: 16 Duration	x: 2 hours	Quali	ty: High							

Simulating constraints on 33kV, 132kV Transformer / Circuit

DSO Requirements

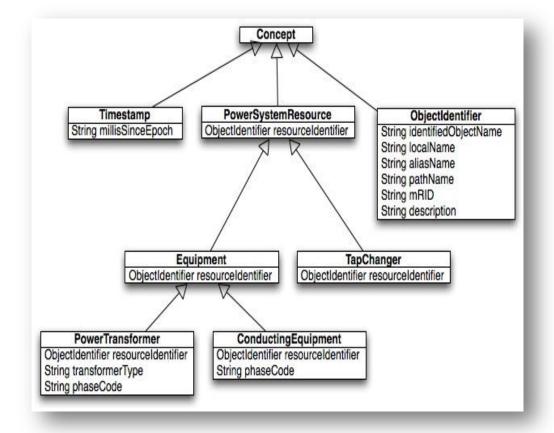
- 1. Understand the impact of potential load/ generation growth on the network.
- 2. Understand opportunities for using flexibility services
- 3. Be able to procure and execute flexibility services
- 4. Co-ordinate more effectively with third parties by sharing information
- 5. Enhance our telecoms network to enable a more actively managed network



4) Co-ordinate effectively by sharing information

Plugs & Socket and EFFS - co-ordination of flexibility services.

Additional access to data is being provided by;


- Common Information Model
- Open LV
- Capacity Maps

Common Information Model

- Import of data into new software tools
- Merging network models
- Data exchange with third parties
 - Plus their evaluation
- CIM message based system interface

CIM progress

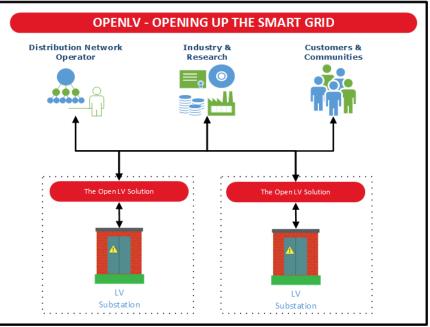
- Data loaded from three core systems (POF/EMU/CROWN),
- Transformation process to canonical model commenced initial POF & EMU conversions started,
- Servers in place, remote access in place, software being installed,
- Initial data correlation in progress,
- Commenced identification of quality issues within data,
- Business liaison being established,
- Data dictionary for POF/EMU/CROWN populated.

Open LV - The concept

Smartphones have been around for less than 10 years The platforms are interesting....but it's all about <u>what they</u> <u>offer.</u>

Since that time, there has been an exponential increase in the Apps we use and we each use a unique set of Apps to suit our individual needs...increasingly to manage our energy use.

Android Number of Applications



OpenLV: Proving the Platform; Creating an Eco-system; Stimulating a Market

Some example Apps:

- What's My Community Demand
- LCT take-up monitoring & prediction
- Real Time Thermal Rating Transformers
- Real Time Thermal Rating Cables
- DSR for managed EV charging
- Automated Voltage Management
- Distributed generation control
- Community Alerts to request reduction or increase in load
- Automated energy storage control
- Industrial standby generation control

DSO - Data & Communications

Postcode search @

Substation/Supply type

6 Bulk

C Grid

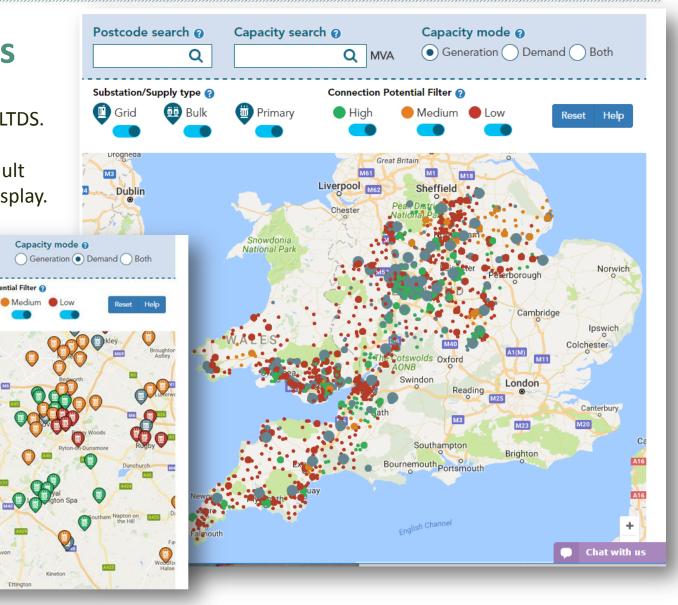
Kemps

Q

Capacity Maps

Combines data for assets, connections pipeline and LTDS. Headrooms calculated for Demand, Generation & Fault level. Worst case drives display.

Capacity search @


Primary

Q MVA

High

Connection Potential Filter

Ettingto

DSO - Data & Communications

Capacity Maps

Green >25% Amber 10-25% Red <10%

Upstream limitations reflected downstream.

Override by Primary System Design team

				• · · · ·	
🗓 Grid 🛛 🛄	Bulk	Primary	High	🛑 Medium 🛛	Lov
	Brc	ation Inform	mation		
I TANK MG					
Penkridg	e	Si Si	ubstation Name	Copt Heath 132/11kv	
izard		III Si	ubstation Type	Primary	
		Su	ubstation Number	670055	
	MS	Demand Headro	om	49.14 MVA	
		Generation Headroom		34.18 MVA	
verh	ot	Upstream Demar	nd Headroom		
A454 × A449 (1		Upstream Gener	ation Headroom		
		Fault Level Head	room	11.62 kA	
0		Associated State	ment of Works	Yes	
Bring Hi	Back	More infor	mation		
Stourbridge	Duck				
1 Y - 1 / 4 () -					
N S					
A456					

Capacities		
Firm Capacity of Substation:	78.00 MVA	
Reverse Power Capability:	39.00 MVA	
Measured Peak Demand:	28.86 MVA	
Upstream Demand Headroom		
Upstream Generation Headroom		
Demand Headroom:	49.14 MVA	
Generation Headroom:	34.18 MVA	
Fault Level Headroom:	11.62 kA	

Fault Levels

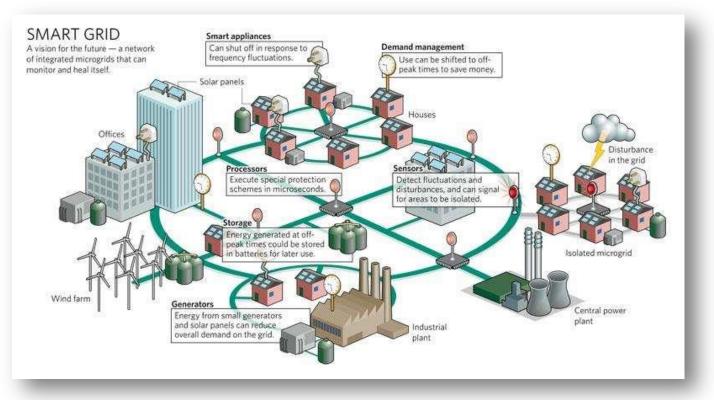
Connected Generation:

Offers sent but not yet accepted:

	Make	Break					
Upstream Equipment Ratings 3Ph:							
Upstream Short Circuit Currents 3Ph:							
Upstream Equipment Ratings 1Ph:							
Upstream Short Circuit Currents 1Ph:							
Downstream Equipment Ratings 3Ph:	50.00 kA	20.00 kA					
Downstream Short Circuit Currents 3Ph:	24.01 kA	8.38 kA					
Downstream Equipment Ratings 1Ph:							
Downstream Short Circuit Currents 1Ph:	1.74 kA	0.99 kA					
Generator Information							
Generator Types:	Photovoltaic, Mixed, Landfill Gas, Sewage Gas, Biogas (not CHP), Photovoltaic, Mixed, Landfill Gas, Sewage Gas, Biogas (not CHP)						

3.22 MVA 0.50 MVA Offers accepted but not yet connected: 1.10 MVA

Chat with us



DSO Requirements

- 1. Understand the impact of potential load/ generation growth on the network.
- 2. Understand opportunities for using flexibility services
- 3. Be able to procure and execute flexibility services
- 4. Co-ordinate more effectively with third parties by sharing information
- 5. Enhance our telecoms network to enable a more actively managed network

5) Enhance our telecoms network to enable a more actively managed network

A NFXUS is:

- Means of Connection
- A Connected Series or Group
- A Tie
- A Link
- The Core or Centre

Priorities in Assessing the Categorisation for Smart Grid Solutions

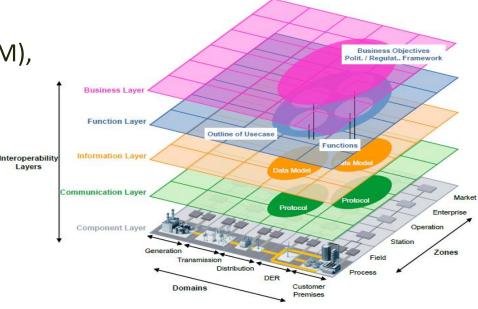
- Relevance and Applicability to WPD;
 - Short term alignment with organisation.
 - Longer term strategic view.
- Relevance and Applicability to the wider UK DNO community;
 - Implications of ED1 & ED2 and the transition to a DSO model and regulatory approach;
- Alignment and Interoperability with International DNO and DSO standards;
 - Learning from activities and alignment coming from DSO's and related organisations;
 - Flexibility to apply learning and lessons from international utilities in a seamless manner;

UNIVERSITY OF STRATHCLYDE POWER NETWORKS DEMONSTRATION CENTR

Wissenson Infrastruk

Infrastruktur und Kommunikationsdienste

Assessment Approach


- Desk research on most relevant sources and authorities to determine Smart Grid categorisation,
- Based on publications by various authorities seek to extract existing categories and structures,
- Review and consider the positives and negatives of each of these categorisations ,
- Consider the telecoms specific attributes that may need to be incorporated or associated with the process of Telecom Template development ,
- Determine whether there are any other gaps in the existing categorisation.

Developing the Communication Template

- For each Smart Grid Solution, a set of Use Cases is created including the Functional & Non-Functional Operational Requirements.
- These requirements determine the communications technology options to develop the Communications Template.
- Each Use Case is formulated using the combination of two development models;
 - The Smart Grid,
 - Architectural Model (SGAM),
 - The EA Transform.

Developing a Communications Template

6 stage process

Step 1: Define Smart Application and its operational needs Step 2: Develop Use Case associated with Smart Applications Step 3: Map Use Cases onto SGAM to define Smart Applications components Step 4: Map functions and information flows between Smart Solution components in SGAM

Step 5: Define Communication requirements for Smart Solution in SGAM Step 6: Map applications Use Case and communications requirements to develop Communication Template

DSO - Data & Communications

THANKS FOR LISTENING

WESTERN POWER DISTRIBUTION

Serving the Midlands, South West and Wales

Jenny Woodruff Western Power Distribution Innovation and Low Carbon Networks Engineer JWoodruff@westernpower.co.uk

Gary McElroy Western Power Distribution Infrastructure Manager gmcelroy@westernpower.co.uk

wpdinnovation@westernpower.co.uk

www.westernpowerinnovation.co.uk