

Jan 2021

NIA Project Registration and PEA Document

Notes on Completion: Please refer to the appropriate NIA Governance Document to assist in the completion of this form. The full completed submission should not exceed 6 pages in total.

Project Registration Project Title Project Reference Dynamic Charging of Vehicles NIA_WPD_055 Project Licensee(s) Project Start Date Project Duration Western Power Distribution December 2020 1 year and 2 months Nominated Project Contact(s) Project Budget Ricky Duke £474,741.30

Nominated Contact Email Address(es)

wpdinnovation@westernpower.co.uk

Problem(s)

As outlined in the third problem statement in Western Power Distribution's (WPD) Innovation Forward Plan 2019 (Electrification of Freight), whilst electrification of small passenger vehicles is becoming more established, battery technology is not yet sufficient to meet the economic and technical requirements of larger and heavier urban and freight vehicles (e.g. buses, delivery vehicles). Dynamic Charging of Vehicles (DynaCoV) project using dynamic wireless charging technology is a potential innovation to address this, however the effect on the electrical distribution network would be significant and is not currently understood.

Method(s)

This feasibility study can be broken down into the following work packages and deliverables.

Work Package 1

Work package one will cover project management activities over the course of the project. This will include the production and execution of the data protection plan and communication plan, as well as day to day project management activities.

Work Package 2

Work Package two will look at researching the current technology available for Dynamic Wireless Power Transfer (DWPT) worldwide. It will include the review of learning and data collection, as well as the expected power requirements and an evaluation of the UK supply chain.

Work Package 3

This Work Package will carry out modelling of traffic flows and vehicle usage patterns to identify the extent of dynamic wireless charging required and assessment of the network impacts of dynamic wireless charging, which can be used by network planners to assess the network when a connection request for this system comes in. This may be delivered in the form of a load profile, with earthing and power quality assessments undertaken. The site will be selected for the case study and then the case study area will be modelled for network impact including load draw, power quality and earthing requirements and considerations. This work Package will then carry out the evaluation of the business case and then will proceed through the project gateway if proven viable.

Work Package 4

Evaluation of the desktop research and data modelling, leading to the development of a roadmap indicating likely adoption rates and timescales for dynamic wireless charging in the UK. This Work Package will also look at the physical installation and safety of DWPT systems.

Work Package 5

Providing delivery details of the next phase and the complete feasibility report. This work package will see the results disseminated to industry stakeholders.

Scope

This project is a tabletop feasibility study and research project to understand the electrical and physical impact of DWPT technology within the UK. Over the 11-month project, we will carry out modelling and simulations of a case study in Coventry to provide DNO's with the specification for connecting this to the distribution network.

Objectives(s)

- Assess the electrical impact of DWPT technology on the distribution network
- Examine issues such as earthing and having multiple connection points
- Model DWPT on a selected case study within Coventry
- Review current DWPT technologies already available worldwide
- · Deliver a set of Electrical values which can be adopted into WPD modeling as business as usual
- · Report on the feasibility of DWPT in the UK
- · Forecast DWPT uptake within the UK
- Evaluate the business case and feasibility for DWPT in the UK

Success Criteria

- · Assess the viability of DWPT rollout within WPD's license areas, both electrically and physically
- · Review of current DWPT or continuous charging systems available worldwide
- · Development of model to accurately assess impact on the distribution network
- · Delivery of a set of Electrical values for WPD to incorporate into in-house planning tools for BaU
- · Dissemination of the results to other UK DNO's and stakeholders

Technology Readiness Level at Start

Technology Readiness Level at Completion

TRL 2 TRL 4

Project Partners and External Funding

The project will be led by Coventry City Council, and the below delivery partners will be subcontracted for various elements of the project:

Cenex
Coventry University
Hubject
Midlands Connect
National Express
Transport for West Midlands
Toyota Tsusho UK Limited

Potential for New Learning

All of the work completed within this feasibility study will be disseminated by a public report in WP5.1. This knowledge will be a valuable resource for the industry in order to better understand DWPT.

Furthermore, the results of the models in WP3 will be publicly disseminated. The purpose of WP3.2 is to produce a set of electrical values/profiles that can be used by any UK DNOs to evaluate the impact of DWPT technology on their local networks. Therefore, this tool will be a key deliverable and dissemination piece.

Other work packages may involve additional dissemination. For example, within WP2 there will be several tasks that create a report to share findings within the consortium. These reports will be shareable externally as part of periodic dissemination for the project.

Tasks planned for external dissemination:

- WP2.1 & 2.2 Research into DWPT technology and data collections and learning for existing projects.
- WP2.4 Study of the use cases for DynaCoV using DWPT technology
- WP2.6 Evaluation of the UK supply chain
- WP3.2 Network impact assessment model
- WP4.1 DynaCoV roadmap
- WP5.1 Final project report.

Scale of Project

This project is a desk-based feasibility study which consists of research and literature reviews as well as construction of a model to assess future network impact & connections. The project will look at a specific case study within Coventry, but this will produce outputs which can be modelled with WPD's software to cover all WPD's four license areas.

Geographical Area

The feasibility study will be a desktop-based study only with no practical testing carried out. All consortium partners are based in the UK except for project partner Hubject, which is based in Germany. The advantage from this funding will be for the benefit of UK industry.

incorporated into WPD planning software and able to replicate the impact and results right across WPD's four licence areas.	
Revenue Allowed for in the RIIO Settlement	
N/A	
Indicative Total NIA Project Expenditure	
The project total expenditure is £417,712.90 of which £375,941.61 will be from NIA funding and £41,771.29 WPD mandatory contrib	ution.
Project Eligibility Assessment Specific Requirements 1	
1a. A NIA Project must have the potential to have a Direct Impact on a Network Licensee's network or the operations of t System Operator and involve the Research, Development, or Demonstration of at least one of the following (please tick applies):	
A specific piece of new (i.e. unproven in GB, or where a Method has been trialled outside the GB the Network Licensee must justify repeating it as part of a Project) equipment (including control and communications systems and software)	X
A specific novel arrangement or application of existing licensee equipment (including control and/or communications systems and/or software)	
A specific novel operational practice directly related to the operation of the Network Licensee's System	
A specific novel commercial arrangement	
Specific Requirements 2	
2a. Has the Potential to Develop Learning That Can be Applied by all Relevant Network Licensees	
Please explain how the learning that will be generated could be used by relevant Network Licenses.	
The project will produce learning about the electrical impact of DWPT technology on the distribution network. This will be derived fro of electrical parameters which will be established about the technology (based on a range of traffic flows and external factors), which be integrated into any DNO modeling software or scenario forecasting.	
Please describe what specific challenge identified in the Network Licensee's innovation strategy that is being addresse Project.	d by the
N/A	
2b. Is the default IPR position being applied?	
Yes	X
2c. Has the Potential to Deliver Net Financial Benefits to Customers?	
Yes	X
Please provide an estimate of the saving if the Problem is solved.	
As this project is a research feasibility study, part of the study will be to determine the full business case of the technology. The business of installing and operating DWPT technology in the UK will be assessed including the associated energy network costs. The be	

business case has been formed using estimated figures from our Electric Vehicle strategy, and some assumptions made about DWPT

This technology will benefit all customers through the ability to charge their vehicles on the move, thus saving them downtime waiting or

technology.

The feasibility study will carry out a detailed case study of the DWPT technology and the network in Coventry, with the results being

charging at conventional chargers. It is also estimated that this type of technology could be utilised by the 40% of our customers who do not have access to off street parking, and for whom would be very expensive to install such a charger (between 4-5K). Utilising this technology will elevate the expensive network upgrades required when rapid chargers are connected to the network, approximately £120,000 per charger, whereas this technology is only estimated to cost around £57,000 in re-enforcements due to the connections being spread out over a much larger area, and an charge multiple vehicles at any one time.

Please provide a calculation of the expected financial benefits of a Development or Demonstration Project (not required for Research Projects). (Base Cost - Method Cost, Against Agreed Baseline).

This project is a feasibility study, of which the full benefits and business case will be evaluated during Work Package 3.

By researching and designing an appropriate connection for this type of technology, we estimate savings of £63,000 per charger connection of c.130kW. This project value is £417k, which means after 7 charger lengths have been connected the project will have recouped the spend and subsequent charger connections will save the customers money. This project will examine the business case in detail within work package 3.6 to determine the full benefits.

Please provide an estimate of how replicable the Method is across GB in terms of the number of sites, the sort of site the method could be applied to, or the percentage of the Network Licensees system where it could be rolled-out.

The findings from this feasibility study will be replicable across all UK DNO's on best practices on connecting DWPT technology to the distribution network.

Please provide an outline of the costs of rolling out the Method across GB.

N/A

2d. Does not Lead to Unnecessary Duplication

Yes

Х

Please demonstrate below that no unnecessary duplication will occur as a result of the Project.

There are currently no NIA projects looking at dynamic wireless charging within the UK.

If applicable, justify why you are undertaking a Project similar to those being carried out by any other Network Licensees.

NΑ

Additional Governance Requirements

Please identify

that the project is innovative (ie not business as usual) and has an unproven business case where the risk warrants a limited Research and Development or Demonstration Project to demonstrate its effectiveness

i) Please identify why the project is innovative and has not been tried before

DWPT technology is completely new and has never been studied or trialed within the UK. Other projects, such as Electric Boulevards have looked at static wireless charging, but a continuous charger which can span many miles has lots of electrical challenges which must be investigated before we can design a connection to our network.

ii) Please identify why the Network Licensee will not fund such a Project as part of its business as usual activities

The technology is a low TRL level and there is currently little information available without carrying out a proper feasibility study.

iii) Please identify why the Project can only be undertaken with the support of the NIA, including reference to the specific risks (eg commercial, technical, operational or regulatory) associated with the Project

Both Local and Highways authorities are already suggesting that continuous charging systems will be a key feature within the HGV charging network of the future. DNO's need to understand how these will impact the network and the future forecasting for rollout now. As relatively little is known about the technology and its low TRL level, this justifies the use of NIA.

This project has been approved by a senior member of staff