

GridKey | title of document here
page 1

Unlocking the smartgrid
A collaboration between Lucy Electric and Sentec

GridKey OpenLV Data Centre
System Overview
GK23000074

GK23000074

Issue 1.0

GridKey | OpenLV Commercial in Confidence page 2

Document Revision History

DATE DESCRIPTION REVISION

July 2017 Initial revision 0.1

August 2017 Updated to include production and pre-production differences 0.2

May 2018 Updated to include correct domain reference for API 1.0

GK23000074

Issue 1.0

GridKey | OpenLV Commercial in Confidence page 3

1. Document Overview

Purpose

The purpose of this document is to provide a description of the various components that make up
the OpenLV Data Centre. Each part of the Data Centre solution is presented in a separate section.

Scope

This document forms part of the Data Centre deliverable and can be supplied and used by 3rd
parties in support of project methods 2 & 3. It shall also act as a reference during FAT activities.

Applicable Documents

The following are referenced in this document. Where a revision is missing, assume that the latest
version applies.

REF ID TITLE/NAME REVISION

2383-MANUL Public API for LV Common Application Platform.docx V04.03.01

2626-RQSPC-
SHT03

Lucy GridKey Comms Container Requirements V00.01.03

2626-RQSPC-
SHT03

Lucy GridKey Sensor Container Requirements V00.02.01

 OpenLV Task Order

Production and Pre-Production Data Centre Differences

This document was formed with the Pre-Production Data Centre as a reference. From a functional
system point of view the 2 setups are identical. However, the Production Data Centre has additional
logging capabilities, backups, higher availability of the database nodes and more importantly a
different domain name. Therefore, all domain names presented in the examples and supporting
information are referencing the Pre-Production system domain test.gridkey.uk.

For the production system this domain will change to opalmatrix.gridkey.uk, to reflect the
anonymised project name opalmatrix.

Therefore, for the purposes of mapping across to the Production Data Centre, the following changes
apply:

1. All references in this document to the API https://test.gridkey.uk shall be interpreted as
https://api.opalmatrix.gridkey.uk

2. All references in this document to the graphing web server https://graph.test.gridkey.uk shall
be interpreted as https://graph.opalmatrix.gridkey.uk

GK23000074

Issue 1.0

GridKey | OpenLV Commercial in Confidence page 4

2. System Overview

The system consists of multiple EC2 instances split across two network ACL groups, as shown in
the Figure 1 below:

• Secure LAN
o Has no direct access to the internet. Only the app server has internet connectivity

through the web server acting as a proxy.
o Database nodes have a consistency level of 2 and therefore replicate data.
o Data from database nodes are backed up to an S3 bucket. A full backup takes place

weekly with hourly incremental backups.

• DMZ
o Contains a server which monitors instance health (CPU, RAM, Hard disk space etc.)
o Contains a logging server which logs all inbound and outbound traffic. All traffic

passes through this node.
o Contains a web server. This web server hosts an apache server to display webpages

to the end user. Apache provides proxies for the API from the app server to the end
user. This server also acts as a proxy between the Open LV units and the app server
to add an additional layer of security to the secure LAN.

o Contains a VPN bastion host to access SSH and other locked down services to
administer servers.

All servers have write access to S3 to enable logging and backups to be stored securely offsite. This
ensures security of backups and integrity of firewall logging data and rsyslog data.

SES is available from all servers to enable emails to be sent should there be a need to alert an
administrator.

Figure 1 - AWS System Overview

GK23000074

Issue 1.0

GridKey | OpenLV Commercial in Confidence page 5

3. Data Processing/Storage

Directory Scanning

The OpenLV Communications Container performs an upload of data via SFTP to the remote Data
Centre. These files are then parsed by another application that runs on the server that polls a
specific directory before processing the file and committing the contents to the database.

Once a file has been parsed it is then stored on the file system in a temporary archive directory. The
purpose of this archive directory storage is to allow for validation of the uploaded data as part of FAT
activities, or for debug purposes should the transfer of data or its contents need to be verified.

Files that are uploaded should adhere to the following naming format:

<Unit Serial Number> - <Time Uploaded Unix Timestamp>.json

e.g.

OpenLV-06 – 1505796823.json.

Files that do not adhere to this format may not be parsed correctly as the unit serial number is
derived from the filename as it is not present in the file content, and it is required to be able to
uniquely index the data in the database.

Backlog Processing

When a communications outage occurs, a situation could arise where a backlog of data is pending
transmission. To avoid problems with Unix timestamps only having ‘second’ resolution, files that are
uploaded in the same second have a monotonically increasing sequence number appended to the
file name. See example in Figure 2 below:

Figure 2 - Example Backlog File Naming

Database Schema

The database schema has been designed so that there is a logical breakdown of data, to ensure
colocation and ensure that queries execute in a timely manner. As such, data is partitioned by the
OpenLV serial number (as configured in the Communications Container configuration file and
therefore present in the uploaded filename), and clustered based upon the data Instance ID.
Therefore, it is essential that OpenLV serial numbers are unique to avoid each units’ data
overwriting one another.

GK23000074

Issue 1.0

GridKey | OpenLV Commercial in Confidence page 6

When processing files, the contents are validated to ensure that they parse as valid JSON, and
contain the various key fields specified as required in 2383-MANUL.

Data Storage

The file content is stored in the database in 2 forms. The first is “raw” and the second is “decoded”.

When data is stored in its "raw" form, it is essentially stored as the JSON string, unprocessed, as it
was uploaded from the OpenLV platform i.e. this is essentially a storage/response/newdata/<IID>
topic. In this way, data can be replayed in the system should that be necessary, or bulk exported on
a day by day basis more easily. When storing this data, the “Timestamp” field in the payload is used
as the time reference. Where this is omitted the file upload timestamp, extracted from the filename,
is used instead.

The second form of data storage depends upon the JSON Object Structure type.

Data for Scalar JSON Object Structures are stored in their “decoded” form. This is so that data can
be more easily plotted without first having to be further processed. This is achieved by extracting the
“Timestamp” and “Value” fields from the parent “Data” field.

Data for non-scalar JSON Object Structures are also stored as “raw” individual messages. This is
achieved by taking each table row in the "storage/response/newdata/IID" topic and storing the
"Data" field against its "SubTopic" name field. The "Data" field is not processed or further decoded.

The reasoning behind this is because these fields are not decoded in the same way as scalar object
types, as they do not lend themselves to being plotted etc. Instead they lend themselves to being
extracted using the API and processed programmatically by a 3rd party application that better
understands the context of the data.

GK23000074

Issue 1.0

GridKey | OpenLV Commercial in Confidence page 7

4. API

As part of Methods 2 & 3 there is a requirement to be able to extract data in a usable format.
Therefore, a RESTful API has been provided to meet this need. As part of this, 3 basic API calls are
available as documented in the rest of this section.

Common to each API call is the need to ensure that the appropriate authorisation is supplied. In
most browsers, the ability to pass in via the URL has been removed. Therefore a 3rd party extension
may need to be installed – suggest ModHeader if using Chrome.

The header information needed by the ModHeader extension is “Authorization” with a value of:

"Basic
Y2MzODYyYmUtNGU4Yy00NWZmLWFhODgtMGJkYzAwYjA1MDM4OjQ0NzFjNWI1LWJmMjctNG
U2NS1iZWI3LTYwOGMxYzhjMmI5ZA==" – note this is an example of the credentials that would
supplied and not valid on the production system.

The following, Figure 3, shows the ModHeader extension with the appropriate information supplied
(albeit truncated)

Figure 3 - Mod Header Authorisation Example

For methods 2 and 3, If a third party implements server-side code, they could hard code this
authorization header into their HTTP GET requests and the end user wouldn't be required to enter it
manually. They would also be supplied with an authorisation set that is unique to them, and that
provides an appropriate level of access i.e. only certain OpenLV platforms or IID’s information would
be accessible.

GK23000074

Issue 1.0

GridKey | OpenLV Commercial in Confidence page 8

List Keyspaces

The first lists the available Cassandra Keyspaces available. This is of particular interest for the FAT,
for the purpose of demonstrating segregation of the OpenLV Data Centre from the business-as-
usual GridKey Data Centre.

The URL is https://test.gridkey.uk/v1

Which produces the output shown in Figure 4:

Figure 4 - Display Keyspaces

This is the entire set of Keyspaces in the system. The presence of other Keyspaces in the list would
imply the non-segregation of data.

Retrieve Raw Data

The second API call is associated with retrieving the “raw” data as described in Section 3 Data
Storage in this document. This allows for both the originally received unprocessed file, and also non-
scalar JSON Object Structures to be retrieved based upon specific subtopic names.

The URL is https://test.gridkey.uk/v1/OPENLV01/{unit-sn}/{iid}/raw/{date}/{topic}:

Where:

• {unit-sn} is the Unit Serial Number as defined in the Communications Container configuration
file and will be unique for each OpenLV hardware instance

• {iid} The IID of the container application that the data originated from

• {date} Data is requested for “raw” data a day at a time at most. This is to prevent large
amounts of data being returned or the query potentially timing out. The format is
YYMMDDhhmmss. Currently on the YYMMDD parts are used, the hhmmss fields should be
set to 0 (this is a placeholder for later expansion if required).

• {topic} This is the topic name, with any “/” replaced with “-“. This is set to “response” to
retrieve the data contained in the files that were uploaded. For other topics that are of non-
scalar JSON Object Structures, use the sub topic name e.g. “bar-voltage-predict-byday-T-30-
30-720”. This method of replacement still functions correctly if topic names already contain
the “-“ character.

Note that due to the JSON parser used, Long and Integer data types are cast to Doubles. Therefore,
for retrieval of raw data that is not “response” i.e. a sub topic, the timestamp fields will be retrieved in
scientific notation format.

Whilst the full original value has been preserved any 3rd party applications that attempt to parse this
data to a Date/Time library will need to cast back to Long/Integer type.

https://test.gridkey.uk/v1
https://test.gridkey.uk/v1/OPENLV01/%7bunit-sn%7d/%7biid%7d/raw/%7bdate%7d/%7btopic%7d

GK23000074

Issue 1.0

GridKey | OpenLV Commercial in Confidence page 9

It is expected that this API call would be most useful for the purposes of replaying data back through
the system, should any analytics need to be re-run on the data (not currently in scope), or for bulk
export of data one day at a time.

An example output is as shown in Figure 5:

Figure 5 - Raw API Call

Retrieve Decoded Data

The third API call is associated with retrieving the “decoded” data as described in Section 3 Data
Storage in this document. It is therefore expected that this API call will only be used for the
extraction of scalar JSON Object Structures.

The URL is https://test.gridkey.uk/v1/OPENLV01/{unit-sn}/{iid}/decoded/{start}/{end}/{topics}:

Where:

• {unit-sn} is the Unit Serial Number as defined in the Communications Container configuration
file and will be unique for each OpenLV hardware instance

• {iid} The IID of the container application that the data originated from

• {start} Start date in the form of YYMMDDhhmmss; the hhmmss fields should be set to 0 (this
is a placeholder for later expansion if required).

• {end} End date in the form of YYMMDDhhmmss; the hhmmss fields should be set to 0 (this is
a placeholder for later expansion if required).

• {topics} This is a comma separated list of topic names with any “/” replaced with “-“. This
method of replacement still functions correctly if topic names already contain the “-“
character.

Whilst multiple topics can be requested (unlike raw where only one can be specified) a large number
of topics will increase the response time of the API call potentially leading to a timeout.

Figure 6 is an example of a decoded API call:

https://test.gridkey.uk/v1/OPENLV01/%7bunit-sn%7d/%7biid%7d/decoded/%7bstart%7d/%7bend%7d/%7btopics%7d

GK23000074

Issue 1.0

GridKey | OpenLV Commercial in Confidence page 10

Figure 6 - Decoded Data API Call

GK23000074

Issue 1.0

GridKey | OpenLV Commercial in Confidence page 11

5. Demonstration Web Server

For the purpose of providing a demonstration of visualising data stored in the Cassandra database,
a public facing site has been provided. This allows for various parameters to be plotted for a
specified time period. As this page was constructed for the purpose of demonstration during the
FAT, the range of parameters available for display will be limited.

The URL is https://graph.test.gridkey.uk

An example of the graph output is shown in Figure 7.

Figure 7 - Example Graph Using API

https://graph.test.gridkey.uk/

