
 

i 

 

      

LV Common Application 
Platform 
Public API 



 

i 

 

 

Report Title: LV Common Application Platform Public API 

Report Status: For Publication 

Project Ref: Drawing: 2383 MANUL V04.03.03 

Date: 18.10.2017 

 

  

Document Control 

 Name Date 

Prepared by: Richard Ash 29.09.2017 

Reviewed by: Tim Butler 18.10.2017 

Recommended by: Richard Potter 18.10.2017 

Approved: Dan Hollingworth 18.10.2017 

 

 

Revision History 

Date Issue Status 

18.10.2017 1.0 For Publication 

 

 
  



 

ii 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCLAIMER  

 

Neither WPD, nor any person acting on its behalf, makes any warranty, express or implied, with respect to the use of any 
information, method or process disclosed in this document or that such use may not infringe the rights of any third party or 
assumes any liabilities with respect to the use of, or for damage resulting in any way from the use of, any information, 
apparatus, method or process disclosed in the document. 

 

© Western Power Distribution 2017 

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means 
electronic, mechanical, photocopying, recording or otherwise, without the written permission of the Future Networks 
Manager, Western Power Distribution, Herald Way, Pegasus Business Park, Castle Donington. DE74 2TU.  

Telephone +44 (0) 1332 827446. E-mail wpdinnovation@westernpower.co.uk 

 
  

mailto:wpdinnovation@westernpower.co.uk


 

iii 

 

Contents 

Executive summary ..................................................................... Error! Bookmark not defined. 

1. Introduction ....................................................................................................................... 6 

2. Glossary .............................................................................................................................. 6 

3. Platform Overview ............................................................................................................. 7 

4. General Principals ............................................................................................................ 11 

4.1 Architecture ............................................................................................................... 11 

4.2 Application Identification .......................................................................................... 12 

4.2.1 Legacy Applications ............................................................................................ 14 

4.3 Message Serialisation ................................................................................................ 14 

4.4 Topic Names .............................................................................................................. 14 

4.5 Units .......................................................................................................................... 15 

4.6 Text Encoding ............................................................................................................ 15 

4.7 Data Persistence ........................................................................................................ 15 

4.8 Data Flow and Valid Flags.......................................................................................... 16 

4.9 Data Priority .............................................................................................................. 16 

5. Start-up Procedures ......................................................................................................... 17 

5.1 LV-CAP System Start .................................................................................................. 17 

5.1.1 Start-up of Core Services ................................................................................... 17 

5.1.2 Start-up of Remaining Applications ................................................................... 17 

5.2 Application Start ........................................................................................................ 17 

5.3 Required Subscriptions for all Applications .............................................................. 18 

6. Shutdown Procedure ....................................................................................................... 19 

7. Data Storage..................................................................................................................... 20 

8. Data Marketplace API ...................................................................................................... 20 

8.1 MQTT Broker ............................................................................................................. 21 

8.1.1 Payload Descriptions .......................................................................................... 22 

8.1.2 Security and Signing ........................................................................................... 22 

8.1.3 Last Will and Testament .................................................................................... 22 

8.1.4 Quality of Service ............................................................................................... 22 

8.2 LV-CAP Core API ........................................................................................................ 24 

8.2.1 Configuration ..................................................................................................... 24 

8.2.2 Status ................................................................................................................. 25 



 

iv 

 

8.2.3 Command ........................................................................................................... 27 

8.2.4 Error ................................................................................................................... 28 

8.3 Sensor Data API ......................................................................................................... 30 

8.3.1 Sensor Readings ................................................................................................. 30 

8.3.2 Sensor Metadata ................................................................................................ 32 

8.4 Algorithm Data API .................................................................................................... 33 

8.5 Data Upload API ........................................................................................................ 34 

8.5.1 Limits .................................................................................................................. 41 

8.5.2 Examples ............................................................................................................ 41 

8.6 Data Storage API........................................................................................................ 44 

9. JSON Object Structures .................................................................................................... 47 

9.1 Scalar Object Format ................................................................................................. 47 

9.2 Series Object Format ................................................................................................. 48 

9.3 Co-ordinate Object Format ....................................................................................... 50 

9.4 Data Series Metadata Object Format ....................................................................... 51 

9.5 Application Configuration Format ............................................................................. 52 

10. References .................................................................................................................... 52 

 

Table of figures 

Figure 1 - LV-CAP System Concept ............................................................................................. 9 

Figure 2 - LV-CAP Software Architecture ................................................................................... 9 

Figure 3 - Data Flow through an example LV-CAP system ....................................................... 11 

Figure 4 - Application start-up procedure ............................................................................... 18 

Figure 5 - Example query payload ............................................................................................ 42 

Figure 6 - Example query payload for a specific Application Instance .................................... 42 

Figure 7 - Example query payload for a specific topic and priority ......................................... 43 

Figure 8 - Example response payload for a single match ........................................................ 44 

Figure 9 - Example uploaded payload for a single record ....................................................... 44 

Figure 10 - Scalar Object Format Structure ............................................................................. 47 

Figure 11 - Series Object Format Structure ............................................................................. 48 

Figure 12 – Example of a Scalar Object used for a load prediction ......................................... 50 

Figure 13 – Example of a Scalar Object used for a harmonic spectrum .................................. 50 

Figure 14 - Co-ordinate Object Format Structure .................................................................... 51 



 

v 

 

Figure 15 - Data Series Metadata Object Format Structure .................................................... 52 

Figure 16 - Third Party Container Configuration File Example ................................................ 52 

 

Table of tables 

Table 1: Glossary of Terms ......................................................................................................... 6 

Table 2 - Required Subscriptions by Third Party Applications ................................................. 18 

Table 3 - Containers Table schema .......................................................................................... 20 

Table 4 - Secured MQTT Broker Settings ................................................................................. 21 

Table 5 - Configuration of MQTT topics ................................................................................... 24 

Table 6 - MQTT Status Topic .................................................................................................... 26 

Table 7 - Status Field Values .................................................................................................... 27 

Table 8 - Commands MQTT ..................................................................................................... 28 

Table 9 - Command Topic Command Values ........................................................................... 28 

Table 10 - Report Error Topic Table ......................................................................................... 29 

Table 11 - Errno Description Table .......................................................................................... 29 

Table 12 - Sensor Reading MQTT messages ............................................................................ 32 

Table 13 - Sensor Reading MQTT messages ............................................................................ 33 

Table 14 - Algorithm Data Table .............................................................................................. 34 

Table 15 - Communications Table MQTT ................................................................................. 35 

Table 16 - Request Object Keys ............................................................................................... 37 

Table 17 - Request Object Keys ............................................................................................... 38 

Table 18 - Response Status Values .......................................................................................... 39 

Table 19 – Data Storage Container .......................................................................................... 45 

Table 20 - Scalar Object Format Keys ...................................................................................... 47 

Table 21 - Scalar Object Format Keys ...................................................................................... 49 

Table 22 - Co-ordinate Object Format Keys ............................................................................. 51 

Table 23 - Third Party Configuration File Keys ......................................................................... 52 

 

 



 

 

 Page 6 of 52 

LV Common Application Platform 
Public API 

1. Introduction 

The Common Application Platform for LV Networks (LV-CAP) is a software environment which 
facilitates the implementation of the Smart Grid at the lower distribution voltages. To drive 
down the cost of deploying Smart Interventions, the platform allows multiple algorithms to 
be deployed to one set of measurement and data processing hardware. The platform allows 
these algorithms to be designed and produced by independent third-party developers and 
packaged as stand-alone Applications which can be easily deployed by the distribution 
network operator without requiring bespoke software development. 

This document details the Application Programming Interface (API) for developers intending 
to write Applications to run on LV-CAP. LV-CAP uses Docker to overcome dependency 
problems for third party developers, and helps to maintain and manage containers. It uses a 
MQTT messaging system for the communication of running containers and has a data storage 
functionality to persist data. This document has details on how a third-party Application can 
be set-up, run and interact with the core services on the platform. 

2. Glossary 

Table 1: Glossary of Terms 

Term Description 

ACL Access Control List, a list of the resources which a specific client may access. Used to 
control access to topics on the MQTT broker. 

API Application Programming Interface – a set of defined interfaces to be used by 
application developers. 

APID See Application ID. 

Application A Docker Container suitable for use with LV-CAP in accordance with this API 
document. All LV-CAP Applications are Docker Containers, but not all Docker 
Containers are suitable for use as LV-CAP Applications. 

Application ID The unique identifier for a specific version of an Application, by combining the Vendor, 
Application Name and Application Version. See Section 4.2 

Application Name This is a string which identifies an Application. This is chosen at will by the Application 
developer. See Section 4.2. 

Application Version A string which indicates the version of Application in a Docker Image. Decimal points 
may be used to separate version numbers, e.g. 1.2.3. This is chosen by the Application 
developer. See Section 4.2. 

BLOB Binary Large OBject, a SQL database field which can store an arbitrary array of binary 
data. 

Container Manager The main process which controls all LV-CAP Applications. 

Docker Open source program that allows Linux applications and their dependencies to be 
packaged as a Docker Image. 



 

 

 Page 7 of 52 

LV Common Application Platform 
Public API 

Docker Container An isolated environment in which a Docker Image is run under Docker. Multiple 
Docker Containers may be created from a single Docker Image and run simultaneously. 

Docker Image A file system image containing a packaged Linux program (with its dependencies) 
which can be deployed to run on a Docker system. 

GUID/UUID A Version 4 GUID/UUID is a universally unique 48-byte identifier which is generated 
using random numbers. Example:- 

821b8e33-4eaa-480e-b205-30fa9572af1a 

IID See Instance ID 

Instance One running copy of an Application, which is separate from any other copy of the 
Application, and has its own independent configuration. See Section 4.2. 

Instance ID String identifying a specific Instance of an Application, which is unique only on a given 
LV-CAP system. See Section 4.2. 

LV Low Voltage. Used in this context to refer to the Low Voltage electricity distribution 
network which delivers power to domestic and commercial customers at 400/230V AC. 

LWT Last Will and Testament, in MQTT a message to be sent when to subscribers when a 
publisher disconnects unexpectedly. 

MQTT (Message Queue Telemetry Transport) a publish subscribe based lightweight 
messaging protocol, used on top of the TCP/IP protocol. 

MQTT Broker Process which is responsible for distributing messages to interested clients based on 
the topic of a message. The LV Common Application Platform runs a private instance of 
an MQTT Broker 

MQTT Topic Identifier within an MQTT message used by the broker to allow filtering and direction 
of messages. All messages are published to a topic, and clients receive them if they are 
subscribed to the topic. 

Vendor A string which identifies the developer of an Application. These are allocated by 
EA Technology to each party creating Applications to run on LV-CAP. 

 

3. Platform Overview 

The LV Common Application Platform (LV-CAP) provides a framework for measurements to 
be made, processed through algorithms, and actions taken based on the results (Figure 1). All 
of these functions may be undertaken by Applications developed by EA Technology or third 
parties. LV-CAP provides a number of core services for third party Container developers to 
utilise. These are: 

1. Container management (installation, configuration, starting and running of 
Applications, including multiple copies and versions.). 

2. A Data Marketplace which allows all Applications on the platform to communicate 
with each other in a uniform manner. 



 

 

 Page 8 of 52 

LV Common Application Platform 
Public API 

3. A Data Storage mechanism which allows Application outputs to be stored for future 
use. 

All other functionality is provided by Applications, but using standard interfaces so that 
different implementations can be swapped in and out without affecting other Applications. 
To achieve this Applications do not communicate directly but rather via the Data Marketplace 
using the messaging API described in Section 8. This is shown in Figure 2. 

A key piece of the provided framework is the Container Manager. The Container Manager has 
ultimate control over the entire system ensuring everything runs as expected. Apart from the 
Container Manager, all core services on the platform run as Docker containers which the 
Container Manager is responsible for starting, stopping and updating. All Applications are 
packaged within Docker containers which the Container Manager will again start, stop and 
manage. A Docker container contains a GNU/Linux application and all its library dependencies 
except the Linux kernel itself. This allows each Docker Image created to be portable, easily 
updated and independent. 

The Container Manager utilises the functionality within Docker to limit and share resources 
of a running container. This control allows the Container Manager to manage platform 
resources, giving Applications their requested resources and preventing them from 
consuming excess resources and starving others of resource. Developers of third party 
Applications must be aware that their application cannot use the entire resources of the 
system and that it must share processor, RAM and storage with other Applications running 
on the system. 

As well as managing the start-up and shutdown of Applications, the Container Manager is 
responsible for ensuring that updated configuration files are delivered to the relevant 
containers, and that updates to containers are applied. Finally, it checks that Applications are 
still running correctly, handling any errors returned from Applications and dealing with 
Applications that have ceased to operate correctly. 



 

 

 Page 9 of 52 

LV Common Application Platform 
Public API 

 
Figure 1 - LV-CAP System Concept 

 
Figure 2 - LV-CAP Software Architecture 

 

All communications between Applications in LV-CAP take place through the Data Marketplace 
(Figure 2). This uses Message Queue Telemetry Transport (MQTT) to transport messages. An 
MQTT broker, Mosquitto, is supplied as part of LV-CAP and is used by both core services and 
third-party containers. The message protocol for communicating on the MQTT broker and 
connection settings to the broker are documented in Section 8 of this document. Access 



 

 

 Page 10 of 52 

LV Common Application Platform 
Public API 

Control Lists (ACLs) are used on the MQTT broker to secure it, preventing Applications from 
publishing on and subscribing to topics they should not. The ACLs are automatically 
configured by LV-CAP when a new Application is added to the system. 

 

LV-CAP systems are configured with an internal IP network. The Data Marketplace operates 
on this internal network and all Applications are automatically connected to it. Applications 
are only connected to external networks when there is a clear requirement for such a 
connection, and the system administrator has permitted it. 

 

The Data Storage Application provides a database connected to the Data Marketplace. As 
well as being used by the Container Manager, it stores the outputs of Applications so that 
they can be subsequently retrieved for external communication or further processing. 

 

Applications running on LV-CAP will generally fulfil one of four roles. Some Applications may 
fulfil more than one role at the same time. 

1. Sensor Applications are responsible for reading data from physical sensor hardware. 
The data read is sanity checked and published to the Data Marketplace in a standard 
format. The data is then available to any other Application to subscribe to. The set of 
sensors provided for any given LV-CAP installation, and hence the Sensor Applications 
required, will vary depending on the user’s requirements. The data format is 
independent of the measurement hardware so that different supplier’s hardware can 
be used without software alterations outside the related Sensor Application. 

2. Algorithm Applications consume data from one or more sensors and perform 
calculations upon it, for instance calculating the real-time temperature of a 
Transformer or forecasting the localised demand for energy. The Applications read 
from the Data Marketplace and publish their outputs back to the Data Marketplace. 

3. Output Applications are the mirror image of Sensor Applications. They respond to 
information on the Data Marketplace (created by Algorithm Applications) by 
controlling physical hardware connected to the LV-CAP system, for instance carrying 
out network switching or energy storage. 

4. Communications Applications connect the LV-CAP platform to the outside world. LV-
CAP provides an IP communications link to the outside world, which Communications 
Applications use to upload and download data. A Communications Application 
uploads selected data values from the Data Marketplace to a central data server, or 
downloads Application images and configuration files from a central management 
server. 

 

The default Communications Application is provided by Nortech Management Ltd. to 
communicate with their iHost server product. 



 

 

 Page 11 of 52 

LV Common Application Platform 
Public API 

4. General Principals 

This section includes some principals which have driven the design and operation of the LV-
CAP system. An understanding of these will make it easier to navigate and comprehend the 
rest of this specification. 

4.1 Architecture 

LV-CAP is designed to work as a loosely-coupled data processing pipeline, in which 
measurement data from Sensor Applications feeds into one or more Algorithm Applications. 
The outputs of these Algorithm Applications may feed other Algorithm Applications. 
Ultimately data reaches either a Communications Application to be sent to an external 
system, or an Output Application to take local actions on the Smart Grid (Figure 3). 

 

 

Figure 3 - Data Flow through an example LV-CAP system 

Data is pushed through the pipeline from the Sensor Applications towards the outputs. The 
pipeline runs in approximately real time, although this is not enforced as in a true real-time 
system. If the workload of the LV-CAP system temporarily exceeds the available processing 
power then the system will lag behind before catching back up when resources allow. 

The pipeline forms a tree structure, with each node being an input or output on a single topic 
in the Data Marketplace. Any Application may subscribe to any topic to make use of the data 
found there, with the delivery of messages to the various destinations handled by the MQTT 
broker. The expectation is that Applications will generally output onto fixed topic names 
(within their allocated sub-tree), whilst being freely configured (via the Configuration API) to 
read from whichever input topics the system operator requires. 



 

 

 Page 12 of 52 

LV Common Application Platform 
Public API 

The MQTT broker forming the Data Marketplace will only buffer a single message on each 
topic, so Containers must handle their input messages sufficiently quickly to be ready when 
the next message arrives on a topic. The Data Marketplace does not perform any rate 
adaption, so Applications need to be prepared to receive their input messages at whatever 
intervals the upstream Application produces them. 

4.2 Application Identification 

Applications must have uniquely defined identifiers. These fulfil a number of roles: 

• To ensure that Applications will never encounter a name “clash” with another 
Application. 

• To allow multiple copies of the same Application to run simultaneously, with separate 
configuration settings. 

• To allow different versions of the same Application to be installed and run 
simultaneously. 

• To allow system operators to unambiguously specify what Applications are to be run 
on any given system. 

In this section, each word in bold is defined in the Glossary at the start of this document. To 
facilitate the selection and operation of Applications, each Application's Docker Image has 
three unique pieces for information associated with it: 

1. A Vendor string. This is a string which identifies the developer of the Application. 
These are allocated by EA Technology to each party creating Applications to run on 
LV-CAP. 

2. An Application Name string. This is a string which identifies the Application. This is 
chosen at will by the Application developer. It should not container version 
information. 

3. An Application Version. This is a string which indicates the version of the Application. 
Decimal points may be used to separate version numbers, e.g. 1.2.3. This is chosen by 
the Application developer. 

This information enabled a system operator to specify exactly what Application they wish to 
run on LV-CAP. There are a number of constraints on the above fields which must be satisfied 
when they are chosen: 

• The Vendor and Application Name must be valid Docker Names (see Reference 4): 
o Composed of valid ASCII characters. 
o Restricted to lower case letters, digits and hyphens (no underscores or 

periods). 
o May not start with a dash. 

• The Application Version has the same restrictions as the Vendor and Application 
Name with the addition that periods are permitted in the Application Version only. 

• Each release or update of an Application must have a unique combination of Vendor, 
Application Name and Application Version. 



 

 

 Page 13 of 52 

LV Common Application Platform 
Public API 

• For an Application to be successfully updated, the update must have an Application 
Version which Docker considers to be different to the existing Application's 
Application Version. 

• For compatibility, the total length of the Vendor, Application Name and Application 
Version must be less than 44 characters. 

The Vendor, Application Name and Application Version are combined to form the 
Application ID <APID>. When used as a file name or Topic Name then these sections are 
separated with an underscore: 

<Vendor>_<Application Name>_<Application Version> 

When used as a tag for a Docker Image then they are combined according to the usual docker 
convention: 

<Vendor>/<Application Name>:<Application Version> 

The <APID> identifies a specific Application executable in a globally unique manner. In the 
future this will be enforced through the digital signing of Application Images and their 
<APID>. 

When creating the Docker Image, these fields are specified to the -t option of the docker build 
command as follows: 

docker build -t <Vendor>/<Application Name>:<Application Version>. 

When an Application is to be executed on LV-CAP, a Docker Container is created from the 
Docker Image. Each Docker Container must have a unique name, and we must support 
creating multiple Containers from one Image. To enable this a fourth field is used, which is 
the Instance. Instance is a two digit number which is unique to this Instance of an Application 
on the LV-CAP system. Instance values are set up in the Container Manager configuration by 
the system operator. The Instance value of "00" is special and reserved for use by 
Applications which cannot have more than one instance running. A single instance of any 
other Application may use any other value between "01" and "99". There is no requirement 
for Instance numbers to be contiguous, and their numeric value has no significance. 

The Vendor, Application Name and Instance are combined to form the Instance ID 
(abbreviated in this document as <IID>) in the form 

<Vendor>_<Application Name>_<Instance> 

The <IID> identifies a specific instance of an Application, which is unique only on a given LV-
CAP system, and may use any (specified) version of the Application. This is set up through the 
Container Manager configuration file. 

Each Application Instance Docker Container created on LV-CAP will have the container name 
in Docker set to the <IID>. 

The Application Version is deliberately omitted from the Instance ID so that the name does 
not change when newer versions of the Application are deployed. The Instance ID <IID> of a 
container is used as its handle, to identify the Container’s area of file system space, MQTT 
topic namespace and so on. 



 

 

 Page 14 of 52 

LV Common Application Platform 
Public API 

4.2.1 Legacy Applications 

Applications developed against older versions of this API (and the Innovate UK project) were 
identified by a single GUID. This 48-byte opaque string served as both Application ID <APID> 
(although it lacked version information) and Instance ID <IID> (although it lacked instance 
numbers). Applications using this form can still run one instance, using their legacy identifiers. 

For these legacy containers, two instances of the same Container with the same GUID will 
never be run on the same LV-CAP installation. The GUID of a container was used as its handle, 
to identify the Container’s area of file system space, MQTT topic namespace and so on. 

4.3 Message Serialisation 

All messages transmitted via the Data Marketplace must be serialised in JavaScript Object 
Notation (JSON). Adding additional white space to JSON payloads to ‘pretty print’ them is 
discouraged. All messages sent via the MQTT Broker must be valid JSON. 

Standardised JSON object structures should be used wherever possible to maximise 
interoperability. These are defined in Section 9 of this document. 

4.4 Topic Names 

All messages exchanged through the Data Marketplace are published on MQTT topics. Whilst 
this API sets out specific topics for some purposes (e.g. interactions with the Container 
Manager) it is up to Application authors to choose suitable topics (and especially sub-topics) 
for the messages which their container produces. In order to use the standard JSON object 
structures defined in Section 9, unchanging information about the value has to be encoded 
in the topic name, rather than in the JSON payload itself. This also reduces the transmission 
of redundant (invariant) information where communications bandwidth is limited. 

The MQTT standard itself places few restrictions on the choice of topic names, apart those 
specified in Section 4.7 of the standard. Within LV-CAP the following restrictions must be 
complied with to ensure reliable inter-operability between Applications.: 

• MQTT topic names shall consist only of ASCII characters (no UTF-8) 

• Topic names shall only contain upper and lower case letters, digits, hyphens and 
underscores 

• Spaces are not permitted topic names. 

• The maximum length of a complete topic name shall be 220 characters, including '/' 
separators. 

The following additional guidance should be borne in mind when selecting names for MQTT 
topics, both in Application development (where topic names are fixed) and in system 
configuration (where topics are defined in the Application configuration file): 

• Use topic levels to separate sections of your topic name. E.g. 
"output/transformer/forecast/4h/capacity" not "output/transformer-
forecast_4hCapacity". 

• Design in extensibility – it will be disruptive to change existing topic names to allow 
additional data to be published (e.g. more channels or intermediate calculation 
results). 



 

 

 Page 15 of 52 

LV Common Application Platform 
Public API 

• Avoid site-specific topic names like "Melrose Avenue North", which will have to be 
changed for each site, in favour of generic labels applicable to similar sites like "Feeder 
1". 

• Use of CamelCase offers more economy in topic characters than 
separation_with_underscores. 

To make it easier for system operators to understand what messages on a topic mean, the 
following general form of topic names is recommended: 

<subtree>/<asset>/<parameter group>/<time>/<parameter> 

Not all components will be required for a given topic name and may be omitted. This results 
in topic names like: 

algorithm/data/0ca2eadb-b128-4dff-9bd7-cbb15e21b8b1/Number1Tx/state/hst 

sensor/data/eatl_modbusrtusensor_01/Number1Tx/load/A 

It is expected that Applications will be flexible and configurable in respect of the topics they 
subscribe to (inputs), but have fixed or generated topic names for publication (outputs). 

4.5 Units 

All messages transmitted should have a timestamp (as shown in the preferred JSON formats 
in section 9). These timestamps are 64-bit UNIX timestamps, defined as the number of 
seconds since 1st Jan 1970 UTC. Where sub-second resolution is required, the fractional value 
should be stored as a separate field. 

Wherever possible, Applications should use the time stamp fields from incoming messages in 
preference to referencing system time (explicitly or implicitly). This will make it much easier 
to test Applications in a reproducible manner by simply replaying a fixed sequence of input 
messages, regardless of the relationship between message time stamps and system time. 

Values are always given in the base SI unit for the quantity being measured or calculated. For 
example, current is always given in Amps, never in milliamps or kiloamps. Temperatures are 
given in degrees Centigrade rather than Kelvin (in accordance with common engineering 
practice). 

Metadata for the display of values may be passed between containers via Data Series 
Metadata Objects described in Section 9.4. 

4.6 Text Encoding 

UTF-8 is the preferred method of encoding text. 

When including non-English text in JSON strings bear in mind that that the double-quote 
character must be escaped with a backslash, and other escape sequences are used for 
newline etc. control characters, as per the JSON specification. 

4.7 Data Persistence 

Applications have two options for persisting data: 



 

 

 Page 16 of 52 

LV Common Application Platform 
Public API 

1. Data which is output to the Data Marketplace can be stored in the Data Storage 
Application (Section 7). Any Application can then retrieve this data in the future (up to 
a time limit imposed by the removal of old data values). 

2. Each Application is assigned a filesystem volume. This file system is private to the 
Application and not visible to any other container on the system. Data can be stored 
here by the Application, e.g. to save system state or history. 

The rest of the Docker Container environment is ephemeral and will be lost when the 
Application is re-started, either by the Container Manager or because the whole LV-CAP 
platform is rebooted. 

4.8 Data Flow and Valid Flags 

LV-CAP is designed to work on the basis that data keeps flowing through the processing 
pipeline at all times. To support this, the standardised JSON object structures in Section 9 all 
contain a Valid key. When correct data is not available or cannot be calculated, Applications 
should continue to output messages to the Data Marketplace in the normal manner, but with 
the Valid key set to false. Applications subscribed to the topics will then be made aware that 
time is moving on, but that there is a problem with the data source. 

Containers which fulfil the Sensor Application role (Section 3) should continue to output 
messages at the configured interval under all circumstances. This includes if the sensors are 
disconnected or producing out-of-range values. When data is not available or out-of-range, 
the "Valid" member in the output should be set to false. The actual sensor value sent in this 
case does not matter, because subscribed containers should not use the value when "Valid" 
is false. The timestamp field must be updated so that the subscribed containers can keep 
track of time. 

Algorithm containers receiving input messages with Valid set to false should not use the Value 
in the received message, but may rely upon the time stamps. When the input timestamps 
reach the point that the algorithm is due to provide output, it must do so. It is up to the 
Application author to decide if there is sufficient Valid data to produce an output or not. If 
there is insufficient Valid data to produce a new result then the container should output, 
setting Valid to false and using the timestamp from the most recent input message (whether 
that message is valid or not). 

4.9 Data Priority 

The standard JSON formats described in Section 9 provide for a Priority field. This allows the 
upload of certain messages to be prioritised by Data Upload Applications, based on policy set 
by the system operator and priority information from Application authors. 

Valid Priority values are integers between 1 and 5. A Priority value of 1 is the highest priority 
and 5 is the lowest priority. Any other Priority value is not valid and is treated the same as if 
Priority is not specified. These messages with no specified Priority have lower Priority than all 
messages with a specified Priority. 

The data APIs in sections 8.4 and 8.5 support query by Priority. 



 

 

 Page 17 of 52 

LV Common Application Platform 
Public API 

5. Start-up Procedures 

5.1 LV-CAP System Start 

5.1.1 Start-up of Core Services 

As discussed in section 3, the LV Common Application Framework consists of a number of 
core services for third party containers to use. These have a defined start-up order and only 
once these have all started up will any other container be started. The Core Services are 
started in the following order: 

1. Container Manager 
2. Data Marketplace 
3. Data Storage Application 

5.1.2 Start-up of Remaining Applications 

The remaining Applications installed on a given LV Common Application Platform will be 
started automatically, once the platform’s framework has successfully started up and entered 
the running state. All other Applications must be independent of each other (there is no 
concept of inter-Application dependencies) so that Applications can start in any order. 
Applications will be started by the Container Manager in order of their installation date (i.e. 
order of when they were added to Docker’s available image list). 

5.2 Application Start 

Each Application on the LV Common Application Platform must perform certain actions when 
it is started by the Container Manager. Failure to do so is likely to result in the Application 
being shut down by the Container Manager. 

Upon starting, a third-party Application must perform the following actions in the given 
order: 

1. Connect to the Data Marketplace (see Section 8.1 for the MQTT Broker connection 
details). 

2. Subscribe to topics listed in Table 2Error! Reference source not found. 
3. Send a configuration request message to the Container Manager via the Data 

Marketplace. 
4. Wait until a response is sent back by the Container Manager. This response will either 

contain the Application’s configuration, or will include an error message if the 
Container Manager is not aware of any configuration for the Application. 

5. If configuration data is received, the Application should process the configuration and 
apply it internally. 

6. If the configuration is valid, the Application can start operating, sending a status 
update to the Container Manager indicating all is OK. 

7. If no configuration is available or there is an error in the configuration, the Application 
must send a status update to the Container Manager indicating an error: 



 

 

 Page 18 of 52 

LV Common Application Platform 
Public API 

o Sending STATUS_INITIAL will result in the Container Manager re-sending the 
configuration file, the Application should stay in a non-operating state awaiting 
configuration. 

o Sending STATUS_ERROR and will cause the Container Manager to restart the 
Application. See Section 8.2.2 for more information on status messages. 

 

 
Figure 4 - Application start-up procedure 

The above diagram shows the Application start procedure for a successful start. 

Due to the Application start order (Section 5.1.2) it is possible that once a container starts its 
‘normal operation’, other Applications it may want to communicate with may not yet be 
operating. In this situation the Application will have to wait until any dependencies are 
running. This is not normally a problem because the MQTT protocol allows publishing and 
subscription to occur in any order, with no requirement for topics to be configured or created 
in advance. 

5.3 Required Subscriptions for all Applications 

All Applications must subscribe to the following MQTT message topics in order to interact 
correctly with the Container Manager and remain running on the platform. 

Table 2 - Required Subscriptions by Third Party Applications 

Topic Purpose 

status/request Receives status requests from the Container Manager. Non-response to two 
consecutive status requests will lead to the Application being restarted without 
notice by the Container Manager. 

config/response/<IID> Receives Application configuration sent by the Container Manager. The IID is the 
Application's own unique IID as in section 4.2 

command/<IID> Integer, the command to execute. 



 

 

 Page 19 of 52 

LV Common Application Platform 
Public API 

6. Shutdown Procedure 

Similar to the start-up procedure (Section 5Error! Reference source not found.), the LV C
ommon Application Platform has a defined shutdown procedure. This shutdown procedure 
is designed to allow Applications to shut down in a safe manner and avoid any data loss or 
corruption. The shutdown procedure not only applies to shutting down of the entire platform, 
but also occurs when an updated Application image is applied. Applications can request their 
own shutdown if required, but all Applications shall respond to a shutdown request from 
LV-CAP. 

When LV-CAP requests shutdown of an Application, the procedure is defined as: 

1. Container Manager sends a shutdown command to the Application via the MQTT 
broker (see section 8.2.3). 

2. The Application handles the notification and performs its own internal shutdown 
procedure, which may include writing any data to disk, stopping all MQTT 
subscriptions including that of status requests, and any other work to perform a clean 
shutdown. Once completed, the Application must respond to the Container Manager 
using a status/response message with the STATUS_SHUT_DWN status. 

3. The Container Manager will then shut down the container. If the Container Manager 
does not receive a status message from the Application to be shutdown which includes 
the STATUS_SHUT_DWN status for more than 1 minute, the container will 
automatically be shut down. 

If the Application fails to shut down within the “status/request” (default 2 minutes) interval 
then Container Manager will shut it down forcibly by terminating the process. 

In the event of an Application requesting its own shutdown by the Container Manager, the 
procedure is defined as: 

1. The Application performs its own internal shutdown procedure, which may include 
writing any data to disk, stopping all MQTT subscriptions including that of status 
requests, and any other work to perform a clean shutdown.  

2. Once completed, the Application must send a status to the Container Manager using 
a status/response message with the STATUS_SHUT_DWN status. 

3. The Container Manager will then shut down the Application, and added to the stopped 
Application list. It will not be run again until the Container Manager configuration is 
altered or the Container Manager is re-started. 

If an Application needs to be re-started by the Container Manager, the procedure is: 

1. The Application prepares for being restarted, which may include writing any data to 
disk, stopping all MQTT subscriptions including that of status requests, and any other 
work to perform a clean restart.  

2. Once completed, the Application must send a status to the Container Manager using 
a status/response message with the STATUS_RESTART status. 

3. The Container Manager will then shut down the Application and start it back up again 
immediately. 



 

 

 Page 20 of 52 

LV Common Application Platform 
Public API 

7. Data Storage 

The Data Storage Application allows persistence of data from Applications. Data stored in the 
Data Storage Application can also be configured by the system administrator to be uploaded 
by one or more Communications Applications. In this role, the Data Storage Application acts 
as a buffer so that data is uploaded to its destination reliably, even in the face of unreliable 
communications links. 

The data stored on the platform will be placed in a database which can be accessed via the 
Data Marketplace (see section 8.3). The output of each Application Instance <IID> will be 
stored in its own table. This table is created when the Application Instance is first created by 
the Container Manager. All tables created for Applications will store records with the format 
documented in Table 3 

Table 3 - Containers Table schema 

Field Type Description 

ID Opaque Integer Each record stored will be assigned an ID by the Data Storage 
Application. This integer will be unique amongst the records currently 
stored in the Data Storage Application, but may be re-used over the life 
of the LV-CAP system as old data is purged from the database and new 
records added. There are no guarantees about the numeric value of this 
identifier. 

Timestamp Integer The Unix timestamp at which the record was added to the Data Storage 
Container. 

SubTopic String Part of the MQTT topic string on the Data Marketplace from which the 
record came will be stored in this field. 

Because tables are allocated by the Application Instance ID, the topic 
string up to the IID would be the same for all records. The common 
string is not stored, leaving only the Application’s sub-topic string. If no 
sub topics are present this field will be null. 

Data BLOB This is the MQTT JSON message sent to be stored. It is stored as a BLOB 
so that no alterations are made to the JSON object. 

 

The payload an Application sends to be stored will retrieved unaltered from the Data Storage 
Application. The Data Storage Application will set the values of the other fields automatically. 
The API for retrieving records is documented in Section 8.5. Applications are strongly 
encouraged to output their data in one of the standard JSON payload formats described in 
Section 9. 

8. Data Marketplace API 

The main form of communication between Applications and the LV Common Application 
Framework is via the Data Marketplace. This section documents the MQTT message topics, 
their associated payload and includes examples of message payload. The API is broken up 



 

 

 Page 21 of 52 

LV Common Application Platform 
Public API 

into sections according to the Application roles (Section 3) expected to use them. Applications 
may (and will) use methods from more than one section of the API. 

8.1 MQTT Broker 

Each container wishing to operate on the LV Common Application Framework must connect 
and communicate using the provided MQTT broker. The LV-CAP system uses a secured MQTT 
broker, in order to support authentication of Application when they connect to the Data 
Marketplace. The connections settings required are shown in Table 4. 

Table 4 - Secured MQTT Broker Settings 

Setting Value 

Hostname marketplace 

Port Number 8883 

Encryption TLS v1.2 or higher 

Authentication X509 client certificate 

Username Set to the Application's Application ID 

Client ID Set to the Application's Application ID 

 

EA Technology will operate a TLS Certificate Authority for the LV-CAP system. All client SSL 
certificates must be signed by this Certificate Authority, which will be trusted by the Data 
Marketplace. This Certificate Authority certificate will be issued to Application developers for 
inclusion in Application at build time, so they can authenticate the Data Marketplace. 

Client certificates will be signed on request by the certificate authority, with the Common 
Name (CN) of the certificate set to the Application ID <APID> of the Application they are to 
be used by (see Section 4.2). This client certificate should be embedded in the Application so 
that it can be used to connect to the Data Marketplace. The client certificate and associated 
private key need to be embedded in the Application so that it can connect to the Marketplace. 
The private key should be encrypted to minimise the risk of it being extracted from the 
Application by a third party. These is no reason for EA Technology, or any other Application 
author, to know the Application's private key. 

When the Application connects to the Data Marketplace it's certificate will be checked. If 
valid, and not revoked by the system operator, it will be allowed to connect. Access control 
lists will then allow the Application to publish on the topics set out in this API. In general, 
subscriptions will not be restricted. 

A new certificate should be obtained whenever an updated version of the Application is 
produced. This both mitigates the fixed expiry date of certificates, and allows the certificate 
of specific Application versions to be revoked if the keys are compromised. This will also have 
to be done when an updated Certificate Authority Root Certificate is required. 



 

 

 Page 22 of 52 

LV Common Application Platform 
Public API 

8.1.1 Payload Descriptions 

JSON does not have a concept of fixed-size (bit width) integers, however implementation in 
strongly typed languages is made much easier by defining the maximum size of integer fields 
wherever possible. In this documentation: 

• Any key which is shown with type “Integer” will always fit into a 32-bit signed integer. 

• Any key which is shown with type “Int64” will always fit into a 64-bit signed integer. 

8.1.2 Security and Signing 

The present implementation of LV-CAP provides only limited security between Applications, 
and so requires a high degree of trust in Application authors. To improve this situation in the 
future, an optional “signature” object has been added to all JSON payloads specified in this 
API. This member is reserved for the definition (in a future version of this API) of a mechanism 
for cryptographically signing each JSON payload. 

The signing scheme is intended to use public (asymmetric) key cryptography. The source 
Application will sign all outgoing messages with a private key, which must be kept secret. 
Destination Applications receiving these messages can use the source Application’s public key 
(which does have to be kept secret) to verify that the messages received are indeed from the 
correct source container. It is intended that the public keys will be distributed to the relevant 
Applications via their configuration data. 

A Application which does not implement signature verification will be able to receive future 
signed messages without modification, because it will ignore the signature object. 
Applications with signature validation implemented will have to decide on their policy for 
messages received without signatures. 

At some future date, it may become mandatory to sign messages on some critical API topics 
when communicating with the LV-CAP core components. It will be up to other Application 
authors at what point they require signed input messages. 

The signing of Docker Images will also be added in future to ensure that when system 
operators specify a particular Application ID <APID> (see section 4.2) only that specific version 
can be run. 

8.1.3 Last Will and Testament 

The MQTT broker supplied by the framework supports the Last Will and Testament (LWT) 
feature. This can be used to define, upon connection, a message which will automatically be 
sent by the broker to subscribers of the set topic upon the non-clean disconnection of a client. 
In order to manage the platform all Applications must provide a LWT on their status response 
topic (Section 8.2.2). The status response sent as the LWT must include the FAILED state 
within the payload. Applications may also set LWT’s on any topic they desire to inform others 
of their failed state. 

8.1.4 Quality of Service 

MQTT provides a Quality of Service (QoS) level feature, which defines how hard a broker or 
client will work to ensure a message is delivered. More details can be found in section 4.3 of 
the MQTT Standard. 



 

 

 Page 23 of 52 

LV Common Application Platform 
Public API 

MQTT QoS is a property of both the publishing and subscribing of a message, so a client can 
publish a message at any QoS and a client may subscribe to a topic at any QoS. The 
implemented QoS will be the lowest of the publishing and subscribing QoS levels. There are 
3 QoS levels defined in MQTT: 

• QoS 0 - At most once. The status request topic has a QoS of 0 as this regular heartbeat 
is not critical, and must be sent regularly. 

• QoS 1 - At least once. The Container Manager sends out commands at QoS 1 as 
Containers can easily handle receiving the same command more than once. 

• QoS 2 - Exactly once. This is used when querying the Data Storage Container, as 
multiple message delivery could have complex and undesirable affects upon the 
database. 

  



 

 

 Page 24 of 52 

LV Common Application Platform 
Public API 

8.2 LV-CAP Core API 

The Core API is responsible for management of Applications. All Applications will need to use the Core API to register with and run on LV-CAP. 

8.2.1  Configuration 

The Configuration message topic is used to request and distribute configuration to Applications. 

QoS: Messages on this these topics must be sent and received with QoS = 1. Applications must cope with multiple copies of their configuration 
information being delivered. 

Retention: Messages sent on these topics must have the retention flag set to false. 

Table 5 - Configuration of MQTT topics 

Topic Description Sender Receiver Payload Notes 

config/request/ 
<IID> 

Message containing a 
request from a container to 
the Container Manager 
requesting it’s configuration 

Any 
Application 

Container 
Manager 

{ 
    "Timestamp": <Int64>, 
    "Signature": {} 
} 

No required payload. 

Timestamp: (Optional) Standard LV-
CAP timestamp (see Section 4.5) 
when the configuration was 
requested. Required in signed 
payloads to protect against replay 
attacks. 

Signature: (Reserved) See Section 
8.1.2 



 

 

 Page 25 of 52 

LV Common Application Platform 
Public API 

config/response/<IID
> 

Message containing updated 
configuration for a specific 
Application Instance. Can be 
a response to a request, or a 
new set of configuration 
pushed to a Application 
Instance. 

Container 
Manager  

Application 
Instance with 
IID specified 
in topic name 

{ 
"Configuration": 
    { 
      "<Key_1>": <Value_1>, 
      "<Key_2>": <Value_2>, 
      "<Key_n>": <Value_n> 
    }, 
    "Timestamp": <Int64>, 
    "Signature": {} 
} 

Configuration: JSON Object read 
directly from the Application Instance 
configuration file. The structure will 
be different for each Application, as 
described in Section 9.5. 

Timestamp: (Optional) Standard LV-
CAP timestamp (see Section 4.5) 
when the configuration was 
requested. Required in signed 
payloads to protect against replay 
attacks. 

Signature: (Reserved) See Section 
8.1.2 

8.2.2 Status 

The Status topic is used by the Container Manager to request the status of running Applications. The Container Manager will periodically request 
the status, and running Applications must respond to the request to confirm that they are operating correctly. 

If an Application does not respond or responds with a status other than STATUS_MSG_OK or STATUS_INITIAL (see Table 7), it is considered to have 
failed the request. After three successive failed status requests the Application will be restarted by the Container Manager. If the Container still 
fails further status requests to reach a total of 5 consecutive requests, it will be permanently shut down, and this error logged in the database. 

QoS: Messages on this these topics must be sent and received with the QoS shown in Table 6 

Retention: Messages on this these topics must have the retention flag set to false. 
  



 

 

 Page 26 of 52 

LV Common Application Platform 
Public API 

 

Table 6 - MQTT Status Topic 

Topic OoS Description Sender Receiver Payload Notes 

status 
/request 

0 Message to request 
status from all 
running containers.  

Container 
Manager  

All 
Applications  

{ 
    "Timestamp": <Int64>, 
    "Signature": {} 
} 

No required payload. 

Timestamp: (Optional) Standard LV-CAP 
timestamp (see Section 4.5) when the status 
was requested. Required in signed payloads 
to protect against replay attacks. 

Signature: (Reserved) See Section 8.1.2 

Status 
/response/<I
ID> 

1 Message containing a 
status update from 
the Application 
Instance identified by 
<IID>. 

Any 
Application 

Container 
Manager 

{ 
  "Status": <Integer>, 
  "Message": "<message>" 
  "Timestamp": <Int64>, 
  "Signature": {} 
} 

 

Status: (Required) One of the values from 
Table 7. 

Message (Optional): If the Message string is 
present it will be sent to the error Database. 

Timestamp: (Optional) Standard LV-CAP 
timestamp (see Section 4.5Error! Reference s
ource not found.) when the status was 
requested. Required in signed payloads to 
protect against replay attacks. 

Signature: (Reserved) See Section8.1.2. 

 
  



 

 

 Page 27 of 52 

LV Common Application Platform 
Public API 

The valid status response values are shown in Table 7. 

Table 7 - Status Field Values 

Status Value Meaning 

1 STATUS_MSG_OK – the Application is running normally. 

2 STATUS_MSG_FAIL – the Application has failed. The Container Manager will restart the container. If the key “Message” is present in the JSON object it 
will be stored in the Data Storage Application as an error message. 

3 STATUS_MSG_ERR – the same as STATUS_MSG_FAIL for backwards compatibility. 

4 STATUS_SHUT_DWN – the Application has completed its shutdown procedures and is ready to be stopped by the Container Manager. The container 
will not be restarted unless the Container Manager configuration is altered or the Container Manager is re-started. 

5 STATUS_INITIAL – the Application is waiting to receive its configuration (and can do nothing until it does). The Container Manager will resend the 
Application's configuration. 

6 STATUS_RESTART – the Application wishes to be re-started. It has completed any shutdown procedures and saving of state and is ready to be stopped 
and started again by the Container Manager. 

 

Status values other than STATUS_MSG_OK and STATUS_INITIAL are regarded as failure conditions. If the key “Message” is present in a JSON object 

with a failure status, the Message string will be stored in the Data Storage Application as an error. 

8.2.3 Command 

The MQTT command topic allows the Container Manager to send instructions to any running Application. 

QoS: Messages on this these topics must be sent and received with QoS = 1 

Retention: Messages sent on this topic must have the retention flag set to false. 



 

 

 Page 28 of 52 

LV Common Application Platform 
Public API 

Table 8 - Commands MQTT 

Topic Description Sender Receiver Payload Notes 

command/<IID> This is a command sent from 
the Container manager for 
the container to execute 

Container 
Manager 

Any 
Application 

{ 
  "Command": <Integer>, 
  "Timestamp": <Int64>, 
  "Signature": {} 
} 

Command: (Required) One of the 
command values shown in Table 9 
below. 

Timestamp: (Optional) Standard LV-
CAP timestamp (see Section 4.5) when 
the command was issued. Required in 
signed payloads to protect against 
replay attacks. 

Signature: (Reserved) See Section 
8.1.2. 

 

The command values in Table 9 are currently specified. In the future, more values may be added, so all LV-CAP Applications must check the 

payload of the message received is the expected value. 

Table 9 - Command Topic Command Values 

Command 
Value 

Command 

1 Shut Down. Currently the only implemented command. All Applications must implement this command. 

This command is used when an updated Application is deployed. The Container Manager will send a shutdown command for the running Application to 
stop everything it is doing before re-starting the Application. See Section 6 for more details. 

8.2.4 Error 

The MQTT error topic allows all containers to log any issue or internal error.  

QoS: Messages on these topics must be sent and received with QoS = 1. 



 

 

 Page 29 of 52 

LV Common Application Platform 
Public API 

Retention: Messages sent on this topic must have the retention flag set to false. 

Table 10 - Report Error Topic Table 

Topic Description Sender Receiver Payload Notes 

storage/data 
/error/<IID> 

Topic to log any external or 
internal errors to storage. 

All 
Applications 

Data Storage  
Application 

{ 
  "Errno": <Integer>, 

  "Message": "String", 
  "Timestamp": <Int64>, 
  "Signature": {} 
} 

Errno: (Required) One of the errno 
values shown in the   

Timestamp: (Optional) Standard LV-
CAP timestamp (see Section Error! R
eference source not found.) when the 
command was issued. Required in 
signed payloads to protect against 
replay attacks. 

Signature: (Reserved) See Section 
8.1.2 

 

Table 11 - Errno Description Table 

Command 
Value 

Errno Name Description 

1 ERRNO_JSON_INVALID Payload from MQTT failed to Parse. Invalid JSON. 

2 ERRNO_IO Input/output Error 

3 ERRNO_ACCESS Permission denied  

4 ERRNO_NO_DEVICE No device found 

5 ERRNO_FILE_DIRECTOR
Y 

Directory not found 



 

 

 Page 30 of 52 

LV Common Application Platform 
Public API 

6 ERRNO_MQTT_SUBSCRI
PTION 

Failed subscription to MQTT Topic 

7 ERRNO_MQTT_PUBLISH Failed Publish, this is only used when trying to publish a payload to. If failed to publish an error message use std::out. This will 
be saved by the Docker Log files and can be accessed later by Admin.  

8 ERRNO_APPLICATION Process failed due to Application error. The message to accompany this Errno is mandatory. 

9 ERRNO_CONFIGURATIO
N 

Failed processing the incoming Config. This is if the contents of the configuration expected does not match or has the wrong 
types. (This could also be ERROR_JSON_INVALID if it’s not valid JSON)  

10 ERRNO_MQTT_CABLLBA
CK 

Error occurred in the MQTT Call back. This can be when setting up the call back or an error within the call back with an 
incoming message 

11 ERRNO_SENSOR This can have two applications. The first, for any Sensor Container that has an error with reading a sensor it can output this 
Errno with the relevant message. 

The second is for any Algorithm Container reading in the Sensor Payload and the Payload is valid but any of the Key types is 
incorrect. 

12 ERRNO_NETWORK Error accessing the network.  

13 ERRNO_PORT Error opening or accessing a port. 

14 ERRNO_PROFILE Any Algorithm Application expecting a Profile Payload, the Payload is valid but any of the Key types is incorrect. 

8.3 Sensor Data API 

Applications which fulfil the Sensor Application role (see Section 3) will publish on the topics in the Sensor Data API. Applications in the Algorithm 
Application role will often subscribe to these topics to obtain their inputs. This data will not normally be stored. 

8.3.1 Sensor Readings 

Topics for transferring sensor reading data collected and published by Sensor Applications. 



 

 

 Page 31 of 52 

LV Common Application Platform 
Public API 

QoS: Messages on this these topics must be sent and received with QoS = 1. 

Retention: Messages on this these topics must have the retention flag set to false. 
  



 

 

 Page 32 of 52 

LV Common Application Platform 
Public API 

 

Table 12 - Sensor Reading MQTT messages 

Topic Description Sender Receiver Payload Notes 

sensor/data/ 
<IID>/<sensorname> 

New sensor readings Sensor 
Applications 

Any 
Application 

Standard Scalar Object Format, Series 
Object Format or Co-ordinate Object 
Format. 

See Section 9 for details of standard 
JSON formats. 

 

See Section 4.4 for guidelines on choosing intelligible topic names for message output. Sensor Applications are responsible for publishing data 
and setting the Valid flag in messages (Section 9) in accordance with the guidelines set out in Section 4.8. 

Readings will often be published at fixed time intervals. These intervals will start when the sensor Application receives its configuration, and so 
may not be aligned to "clock face" times. For instance, if the configuration was received at 09:05:00, setting a time interval of 20 seconds. The 
Sensor Application will output at 09:05:20 then at 09:05:45 and so on. 

Depending on the properties of the sensor Application, there is a possibility that if many sensors have the same interval time and one sensor 
takes longer to read that this would delay the next sensor and so on. The start of the normal operation for the Sensor Application is most 
susceptible to this, however after a short time this will reach an equilibrium and each output will be at the prescribed interval. Applications 
consuming the messages must be equipped to cope with these timing variations. 

8.3.2 Sensor Metadata 

Topics for transferring sensor metadata published by Sensor Applications. Publishing on these Metadata topics is optional. 

QoS: Messages on this these topics must be sent and received with QoS = 1. 

Retention: Messages on this these topics must have the retention flag set to true. 
  



 

 

 Page 33 of 52 

LV Common Application Platform 
Public API 

 

Table 13 - Sensor Reading MQTT messages 

Topic Description Sender Receiver Payload Notes 

sensor/data/ 
<IID>/<sensorname> 

New sensor readings Sensor 
Applications 

Any 
Application 

Standard Scalar Object Format, Series 
Object Format or Co-ordinate Object 
Format. 

See Section 9 for details of standard 
JSON formats. 

 

8.4 Algorithm Data API 

Applications which fulfil the Algorithm Application role (see Section 3) will publish on the topics described in the Algorithm Data API. Application 
in the Algorithm Application role may subscribe to these topics to obtain inputs. Applications in the Output Application role will normally 
subscribe to one or more of these topics to obtain inputs. 

Data published on these topics may be stored in the Data Storage Application, depending on the latter's configuration and the "ToStore" flag set 
by the publishing Application. Only stored data will be available for upload by Communications Applications. 

QoS: Messages on this these topics must be sent and received with QoS = 1. 

Retention: Messages on this these topics must have the retention flag set to false. 
  



 

 

 Page 34 of 52 

LV Common Application Platform 
Public API 

 

Table 14 - Algorithm Data Table 

Topic Description Sender Receiver Payload Notes 

algorithm/data/ 
<IID>/ 
<subtopic> 

The main topic an algorithm 
Application will publish its 
data on 

Algorithm 
Application 

Any 
Application 

Any valid JSON object. 

 

Applications are strongly encouraged to 
use one of the standard JSON Object 
Formats to improve interoperability. 

{ 
  <Valid JSON Payload> 
} 

Algorithm Applications may output on 
any sub-topic starting with 
“algorithm/data/<IID>” (where <IID> is 
the Application Instance's assigned 
identifier). 

 

When choosing the sub-topic on which to output data, authors are encouraged to use a descriptive topic name (Section 4.4Error! Reference s
ource not found.). This makes configuring systems easier and less error prone. For example, transformer capacity forecasts for the available 
capacity in transformer T1 over the next 4 hours might be output on topic 

algorithm/data/<IID>/T1/forecast/4h/capacity 

If the JSON payload is to be stored in the Data Storage Application it must have a KEY “ToStore” and the value set to true. If this is not present 
or is set to false then the data will not be stored. Only stored data will be available for upload by Communications Applications. 

Payloads should have a KEY “Timestamp” containing the Unix timestamp the calculation refers to. Where the calculation covers a range of time, 
this should be the time stamp of the most recent time covered by the calculation. 

Algorithm Applications may use optional metadata subtopics in exactly the same way as Sensor Applications, as documented in Section 8.3.2. 

8.5 Data Upload API 

The Data Upload API provides a means to access the data queued for upload in the Data Storage Application. Applications which fulfil the 
Communications Application Upload role (see Section 3) will use this API extensively. Applications using this API must be explicitly authorised by 



 

 

 Page 35 of 52 

LV Common Application Platform 
Public API 

the system operator in the Data Storage Application configuration. A separate (virtual) queue is maintained for each Upload Application of data 
which is waiting for upload. Once a message has been uploaded the Upload Application must notify this fact back to the Data Storage Application 
via this API so that the queues can be updated. 

This API operates on a pattern of separate topics for requests and response messages. When using this API, Applications should always subscribe 
to the response topic before publishing a request. This avoids a race between the response and the subscription which may cause the container 
to miss response messages. 

All methods in this API work with the per-Application database tables described in Section 7. The SubTopic and Data columns are set from the 
received message. The other columns in the table will be set automatically by the Data Storage Application. 

QoS: Messages on this these topics must be sent and received with the QoS shown in Table 15. 

Retention: Messages on this these topics must have the retention flag set to false. 

Table 15 - Communications Table MQTT 

Topic QoS Description Sender Receiver Payload Notes 

storage/requ
est 
/newdata/<II
D> 

2 A request for new 
data to be uploaded 
by Upload Application 
<IID>. The request will 
search all tables in the 
database which the 
Application is 
permitted to upload 
from. 

Upload 
Application 
with 
identifier 
<IID> 

Data 
Storage 
Application 

{ 
    "MaxLength": <Integer>, 
    "StartTime": <Int64>, 
    "EndTime": <Int64>, 
    "PreferOldest": <Boolean>, 

    “InstanceID”: <IID> 
    "SubTopic": <String>, 
    "MinPriority": <Int>, 
    "MaxPriority": <Int>, 
    "Timestamp": <Int64>, 
    "Signature": {} 
} 

The request Payload keys are 
documented in Error! Reference s
ource not found.. 



 

 

 Page 36 of 52 

LV Common Application Platform 
Public API 

storage/resp
onse/newdat
a/<IID> 

2 The response to the 
above request. 

Data Storage 
Application 

Upload 
Application 
with 
identifier 
<IID> 

{ 
"Status": <Integer>, 
"Response": [ 
    { 
      "TableName": <IID>, 
      "TableRows": [ 
        { 
        "ID":<Integer>, 
        "Timestamp": <Int64>, 
        "SubTopic": <string>, 
        "Data": <JSON Object>, 
        }, 
        {rowN} 
      ] 
    }, 
    { 
      "TableName": <IID>, 
       “TableRows”: [ 
         { 
        "ID":<Integer>, 
        "Timestamp": <Int64>, 
        "SubTopic": <string>, 
        "Data": <JSON Object>, 
        }, 
        {rowN} 
      ] 
    } 
  ] 

"Timestamp": <Int64>, 
"Signature": {} 
} 

The response Payload keys are 
documented in Error! Reference s
ource not found.. 

If an error occurs then the Payload 
will still have Status and Response 
members, but the Response array 
will be empty. 



 

 

 Page 37 of 52 

LV Common Application Platform 
Public API 

storage/uplo
aded/<IID> 

1 Indicates that 
messages have been 
uploaded by <IID> and 
they should be 
removed from the 
upload queue. 

Upload 
Application 
with 
identifier 
<IID> 

Data 
Storage 
Application 

{ 
"NewData": [ 
    {"<IID>": [<Integer>, 
<Integer>]}, 
    {"<IID>": [<Integer>, 
<Integer>]} 
  ], 

"Timestamp": <Int64>, 
"Signature": {} 
} 

NewData: (Required) Array of objects, 
one for each table to be updated. 

<IID>: (Required) Array of opaque 
integer identifiers of the messages 
which have been uploaded. 

Timestamp: (Optional) Standard LV-
CAP timestamp (see Section Error! R
eference source not found.) when the 
update was sent. Required in signed 
payloads to protect against replay 
attacks. 

Signature: (Reserved) See Section 
Error! Reference source not found.. 

 

Table 16 - Request Object Keys 

Key Status Description 

MaxLength Optional The maximum number of records to be returned from the database. This is subject to an upper limit set in the Data Storage 
Container configuration (see 8.5.1Error! Reference source not found. below). If no value is given then the default value is 100 r
ecords. 

StartTime Optional A UNIX timestamp. Only records added to the Data Storage Application after this time will be returned. If not supplied then 
records from the start of the database will be returned, unless the operator has imposed a tighter restriction. 

EndTime Optional A Unix timestamp. Only records added to the Data Storage Application before this time will be returned. If not supplied then 
records up to the present time are returned. 

PreferOldes
t 

Optional Flag indicating that if there are more than MaxLength records available, the oldest data should be returned rather than the 
default of returning the newest data. 

InstanceID Optional String identifying the Application Instance which data should be returned for. Only records which exactly match the given 
topic will be returned (no wildcards). This constrains the query to only return results from the specified table in the database.  



 

 

 Page 38 of 52 

LV Common Application Platform 
Public API 

If this member is an empty string or omitted from the JSON then data from all Application Instances is returned. 

SubTopic Optional String giving the sub-topic data is required for. This is the sub-topic below algorithm/data/<IID>. Only records which exactly 
match the given sub-topic will be returned (no wildcards). This string does not include the '/' between the IID and the sub-
topic (see example in Figure 7Error! Reference source not found.). 

To retrieve data from all sub-topics, do not include this key in the JSON payload. To request data only from the top-level topic 
(no sub-topics) then this key must be included in the JSON payload with an empty string value. 

MaxPriority Optional Integer defining what priority messages are to be returned. If this JSON key is supplied, messages with priority equal to or 
numerically less than the value only will be returned. The special value of 6 can be used to return only messages which had no 
Priority value when stored. If neither this JSON key nor MaxPriority is specified then messages of all priorities will be returned. 

MinPriority Optional Integer defining what priority messages are to be returned. If this JSON key is supplied, messages with priority equal to or 
numerically greater than the value only will be returned. If neither this JSON key nor MaxPriority is specified then messages of 
all priorities will be returned. If both keys are supplied then only messages which meet both criteria will be returned. 

Timestamp Optional A UNIX timestamp when the request was sent. Required in signed payloads to protect against replay attacks. 

Signature Reserved See Section 8.1.2 

 

Table 17 - Request Object Keys 

Key Status Description 

Status Always Present Integer indicating whether the query succeeded or not. See Table 18 

Response If Status = 
DSC_QUERY_OK 

An array of objects containing data from different tables to be uploaded. Always an array even if data is only from one table. 

Response/Ta
bleName 

Always Present Name of the table (source application Instance ID) the data in this object is from. 



 

 

 Page 39 of 52 

LV Common Application Platform 
Public API 

Response/Ta
bleRows 

Always Present An array of selected rows from the table (array even if only one row is selected). Each object in the array is an individual 
message from the source table. 

Response/Ta
bleRows/ID 

Always Present Opaque integer identifier for the message. These have no meaning except as a handle to be passed back to the Data Storage 
Application when the message has been uploaded. ID values are only unique within a single table, and may be recycled after 
the database has been cleaned. 

Response/Ta
bleRows/Tim
estamp 

 UNIX timestamp when the message was added to the Data Storage Application (see Section Error! Reference source not f
ound.). 

Response/Ta
bleRows/Sub
Topic 

 The subtopic (below algorithm/<IID>) on which this message was published. For backwards compatibility, the sub-topic string 
returned always starts with a '/' character. Messages with no sub-topic are returned with sub-topic string of '/'. See also the 
example in Figure 8. 

Response/Ta
bleRows/Dat
a 

 The original message JSON object stored in the Data Storage Application. 

Timestamp Optional A UNIX timestamp when the response was sent. Required in signed responses to protect against replay attacks. 

Signature Reserved See Section 8.1.2 

 

Table 18 - Response Status Values 

Status Value Code Description 

0  Never sent, an unanticipated error. 

1 DSC_QUERY_OK Query succeeded, the length of the complete results set is less than or equal to MaxLength. The result is returned in the 
TableRows array. See also DSC_QUERY_MORE. 

2 DSC_QUERY_EMPTY The query was valid, but found no records. The TableRows array will be empty. 



 

 

 Page 40 of 52 

LV Common Application Platform 
Public API 

3 DSC_QUERY_TABLE_DE
NIED 

The query is against a table (Application Instance) which the sending container is not allowed to access. 

4 DSC_QUERY_TOO_LON
G 

The query requested more data than the Data Storage Application is willing to provide, because the MaxLength field value 
was too large (see 8.5.1below). 

5 DSC_QUERY_TOO_BIG The data requested by the query is too big to fit into the MQTT payload length restriction. 

6 DSC_QUERY_TOO_OLD The data requested in the query is from further in the past than the Data Storage Application is willing to provide. 

7 DSC_UNAVAILABLE The Data Storage Application is unable to respond to this request, either because it is too busy or is in the process of shutting 
down. 

8 DSC_QUERY_MORE Query succeeded, there are more than MaxLength results. The first MaxLength results are returned in the 
TableRows array, but another query is needed to get more values. 

9 DSC_QUERY_INVALID The JSON query object is empty or not valid JSON and cannot be parsed. 

 

The Data Upload API is not designed to be re-entrant. After a request has been made, the container should wait for the response (there may 
need to be an exceptional time-out in case the Data Storage Application suffers an error). If a second request is made whilst the response is 
being produced, the response is undefined. The request does not modify the database at all, so if a second identical request is made after the 
first response is received, the same data will be returned. 

The response status value is used to show whether there is more data available than was sent or not. There is no concept of a database cursor 
or response pagination. As a result, API users who need to upload all the available data must: 

1. Request data for upload. 
2. Upload the received messages (if any). 
3. Update the database to mark the messages as uploaded. 
4. Continue querying until a response of DSC_QUERY_EMPTY is received, at which point there is no more data to upload. 



 

 

 Page 41 of 52 

LV Common Application Platform 
Public API 

Although the JSON format for the "storage/response/newdata/<IID>" topic allows for messages from multiple tables to be sent in one message, 
this is not guaranteed. The Data Storage Container may opt to return data from only one table or topic in the response (where there is data to 
retrieve), and return data from other tables/topics when subsequent requests are received. 

8.5.1 Limits 

The Data Storage Application is a shared resource and excessively large queries have the potential to degrade the performance of LV-CAP for all 
users. To mitigate this risk, limits are imposed on the queries which will be accepted. 

• Maximum number of records requested in one query. If MaxLength is not set then a limit of 100 records will be applied. A query for 100 
records will always be permitted. This limit may be increased (up to a maximum of 15 000) by the LV-CAP operator, but Application should 
not depend upon larger queries being allowed on any given system. Note that the limit is on the requested size, not the actual number 
of records found (which is not known when the query is set up). Thus a request for 16 000 records will always fail (DSC_QUERY_TOO_LONG 
from Error! Reference source not found.), even if the table is empty. 

• Maximum query size. Because the query result is sent as an MQTT message via the Data Marketplace, it is limited to a maximum of 256MB 
(268,435,455 bytes), as documented in section 2.2.3 of the MQTT 3.1.1 specification. If the query results in a message which is longer than 
this limit, then an error (DSC_QUERY_TOO_BIG from Table 18.) is returned instead. Applications must request fewer messages to reduce the 
returned message size below the limit.  

• Maximum data age. The Data Storage Application will not be able to store data going back in time indefinitely. Old records will be purged 
by the Data Storage Application to control the database size. To manage database performance the LV-CAP operator may also impose a 
maximum age on queries. Any request for data older than this age will fail with DSC_QUERY_TOO_OLD from Table 18 

8.5.2 Examples 

An example query payload requesting the oldest available data for upload, from all Applications, is shown in Figure 5. The query is not signed. 
Up to 100 records will be returned as there is no maximum length given. This query may fail: 

• With status DSC_QUERY_TOO_OLD if the Data Upload Application does not allow queries indefinitely into the past. 

• With status DSC_UNAVAILABLE if the Data Upload Application is shutting down or overloaded. 

• With status DSC_QUERY_TOO_BIG if the results will not fit in a MQTT packet. 

If it succeeds it could give status: 



 

 

 Page 42 of 52 

LV Common Application Platform 
Public API 

• DSC_QUERY_EMPTY if there is no data to be sent. 

• DSC_QUERY_OK if there are between 1 and 100 messages to be sent. 

• DSC_QUERY_MORE is there are more than 100 messages to be sent. 

 

{ 
    "PreferOldest": True 
} 

Figure 5 - Example query payload 

An example query payload requesting the latest available data from a specific Application Instance is shown in Figure 6Error! Reference source 
not found.. The query is not signed. Up to 50 records will be returned as requested. This query may fail: 

• With status DSC_QUERY_TABLE_DENIED if the Data Storage Application does not allow this Data Upload Application to upload data from this 
Application Instance. 

• With status DSC_UNAVAILABLE if the Data Storage Application is shutting down or overloaded. 

• With status DSC_QUERY_TOO_BIG if the results will not fit in a MQTT packet. 

If it succeeds it could give status: 

• DSC_QUERY_EMPTY if there are no messages from this Application Instance. 

• DSC_QUERY_OK if there are between 1 and 50 messages to be sent. 

• DSC_QUERY_MORE is there are more than 50 messages to be sent. 
 

{ 
    "MaxLength": 50, 
    “InstanceID”: "eatl_profiler_04" 
} 

Figure 6 - Example query payload for a specific Application Instance 

An example query payload requesting the latest, highest priority, data from a specific topic is shown in Figure 7. The data requested would 
originally have been published on topic "algorithm/data/eatl_profiler_04/alarm/highhigh" or "storage/data/eatl_profiler_04/alarm/highhigh". 
The query is not signed. Up to 10 records will be returned as requested. This query may fail: 



 

 

 Page 43 of 52 

LV Common Application Platform 
Public API 

• With status DSC_QUERY_TABLE_DENIED if the Data Storage Application does not allow this Data Upload Application to upload data from this 
Application Instance. 

• With status DSC_UNAVAILABLE if the Data Storage Application is shutting down or overloaded. 

• With status DSC_QUERY_TOO_BIG if the results will not fit in a MQTT packet. 

If it succeeds it could give status: 

• DSC_QUERY_EMPTY if there are no messages on this topic with priority equal to 1. 

• DSC_QUERY_OK if there are between 1 and 10 messages on this topic with priority 1. 

• DSC_QUERY_MORE is there are more than 10 messages on this topic with priority 1 

 
{ 
    "MaxLength": 10, 
    "InstanceID": "eatl_profiler_04", 
    "SubTopic": "alarm/highhigh", 
    "MaxPriority": 1 
} 

Figure 7 - Example query payload for a specific topic and priority 

The result of a successful run of this query is shown in Figure 8. The sole available record is returned, with the status DSC_QUERY_OK. The 
TableName field contains the InstanceID of the application which produced the data, which was passed as InstanceID in the query. The TableRows 
array contains the single record, with its ID, time-stamp and sub-topic (note the leading '/' here for backwards compatibility) which was passed 
in the query. 

 



 

 

 Page 44 of 52 

LV Common Application Platform 
Public API 

{ 
"Status": 1, 
"Response": [ 
    { 
      "TableName": "eatl_profiler_04", 
      "TableRows": [ 
        { 
        "ID": 101, 
        "Timestamp": 1504110640, 
        "SubTopic": "/60/busbar/l3/voltage-mean", 
        "Data": {"Timestamp":1504110640, "Value":240.0, "Valid":true, "ToStore":true} 
        } 
      ] 
    } 
  ] 
} 

Figure 8 - Example response payload for a single match 

When the data has been successfully uploaded, the database record can be marked as recorded by sending an uploaded payload like that shown 
in Figure 9. This will mark the record with ID 101 in the output of Application Instance eatl_profiler_04 as uploaded, so subsequent queries by 
the same Data Upload Application Instance will not return this record. 

{ 
"NewData": [ 
    {"eatl_profiler_04": [101]} 
  ] 
} 

Figure 9 - Example uploaded payload for a single record 

8.6 Data Storage API 

The Data Storage API provides a means to access the data persistently stored by the Data Storage Application. This API provides a mechanism 
for Applications to access data previously stored by Applications, e.g. where a system history is required. 

This API operates on a pattern of separate topics for requests and response messages. When using this API, Applications should always subscribe 
to the response topic before publishing a request. This avoids a race between the response and the subscription which may cause the container 
to miss response messages. 



 

 

 Page 45 of 52 

LV Common Application Platform 
Public API 

All methods in this API work with the per-Application Instance database tables described in Section 7. The SubTopic and Data columns are set 
from the received message. The other columns in the table will be set automatically by the Data Storage Application. 

 
Table 19 – Data Storage Container 

Topic QoS Description  Sender Receiver Payload Notes 

storage/data/ 
<IID>/ 

2 Insert data into the 
Data Storage 
Application, in the 
<IID> table. 

Any 
Application 

Data Storage 
Application 

{ 
    "Key": Data, 
    "KeyN": DataN 
} 

Data messages on this topic can 
hold anything the sender wishes. 
The message payload will be stored 
unaltered as a BLOB. 

If messages are sent on a sub-topic 
below storage/data/ 
<IID>/ then the sub-topic will be 
stored in the SubTopic column of 
the table. 

This is equivalent to publishing data 
on algorithm/data/<IID> with the 
ToStore flag true. 

storage/request/ 
<IID> 

1 Request data by the 
Application Instance 
<IID>. 

Any 
Application 

Data Storage 
Application 

{ 
    "MaxLength": <Integer>, 
    "StartTime": <Int64>, 
    "EndTime": <Int64>, 
    "PreferOldest": 
<Boolean>, 

    "InstanceID": <IID> 
    "SubTopic": <String>, 
    "MinPriority": <Int>, 
    "MaxPriority": <Int>, 
    "Timestamp": <Int64>, 
    "Signature": {} 
} 

The Data Storage Application will 
return the requested data on the 
storage response topic below. 

The request Payload keys are 
documented in Table 16 



 

 

 Page 46 of 52 

LV Common Application Platform 
Public API 

storage/response/<
IID> 

1 The response from the 
data storage container 
after a get request by 
Application Instance 
<IID>. 

Data Storage 
Application 

The <IID> 
Application 
which 
requested 
the table 

{ 
"Status": <Integer>, 
"Response": [ 
    { 
      "TableName": <IID>, 
      "TableRows": [ 
        { 
        "ID":<Integer>, 
        "Timestamp": <Int64>, 
        "SubTopic": <string>, 
        "Data": <JSON 
Object>, 
        }, 
        {more rows} 
      ] 
    } 
  ] 
} 

The response Payload keys are 
documented in Table 17. 

Because of the automatic storing of Algorithm output described in Section 8.4, it will be unusual to need to explicitly store data using the 
"storage/data/" topic. Publishing on the "storage/data/<IID>" topic has exactly the same results as publishing on the "algorithm/data/<IID>" 
topic with the ToStore flag true. 

The fields of the message on the request topic are documented in Table 16, and those of the response message on the response topic in Table 
17. These objects are deliberately the same as those used by the Data Upload API. The same rules for InstanceID and SubTopic apply. Similarly, 
"storage/response/newdata/<IID>" and "storage/response/<IID>" use the same response format, although in this API there will only ever be 
data from one table and so only one element in the Response array. Note that the Instance ID <IID> in the topic names refers to the Application 
making the requests and receiving the data, not the table being accessed (except in the first topic documented, where they are the same). 

 



 

 

 Page 47 of 52 

LV Common Application Platform 
Public API 

9. JSON Object Structures 

All messages passed through the Data Marketplace, and all Application Configuration data, is 
serialised as JSON objects. Whilst for some purposes bespoke JSON object structures are necessary, 
wherever possible use should be made of the standard JSON object structures defined in this 
section. 

Using standard object structures ensures that data can be passed from any Application to any other 
Application without the need for bespoke software development. It minimises the need for 
Applications to cope with data from different sources in different formats. Applications which 
output in standard formats will be best placed to take advantage of facilities provided by LV-CAP 
and other Applications. 

In applying these Object formats consideration should also be given to the general principals set out 
in Section 4. 

9.1 Scalar Object Format 

The default choice of JSON Object for almost all sensor readings and many algorithm outputs will 
be the Scalar Object. It represents a single value at a single point in time, for instance a temperature 
or a power flow. To provide more metadata about the value and how it was arrived at, a separate 
Data Series Metadata Object should be used (see Section 9.4). 
{ 
    "Timestamp": <Int64>, 
    "Value": < >, 
    "Valid": <Boolean>, 
    "ToStore": <Boolean>, 
    "Priority": <Int>, 
    "Signature": {} 
} 

Figure 10 - Scalar Object Format Structure 

Table 20 - Scalar Object Format Keys 

Key Status Description 

Timestamp Required Standard LV-CAP timestamp (see Section 4.5) when the reading was 
made. 

Value Required The reading, converted to base engineering units. The reading can be of 
any scalar type (Boolean, Integer or Floating Point). 

Valid Required A logical value, showing if the Value is within the expected range 
(configured). 

ToStore Optional Flag used historically to indicate whether the data should be stored by 
the Data Storage Application or not. May be over-ridden by the Data 
Storage Application configuration. 

Priority Optional A priority indicator as in section 4.9, which allows the upload of certain 
messages to be prioritised by Data Upload Applications. 

Signature Reserved See Section 8.1.2Error! Reference source not found. 



 

 

 Page 48 of 52 

LV Common Application Platform 
Public API 

The Value is always given in the base SI unit for the quantity being measured or calculated, as in 
Section 4.5. The units can be given explicitly in the optional Data Series Metadata Object (Section 
9.4). 

9.2 Series Object Format 

Where a series of closely related values are to be sent as a set then a Series Object provides a way 
to package the complete set of values in a single JSON Object. It can represent a time series of values 
(anything from a fault waveform recorder (sampling many times per mains cycle) to a load profile 
(hourly load values), or a frequency spectrum. The object contains fields to record what range of 
source data was used to produce series. To provide more metadata about the value and how it was 
arrived at, a separate Data Series Metadata Object should be used (see Section 9.4). 
{ 
    "Timestamp": <Int64>, 
    "StartPoint": <Int64 or float>, 
    "Interval" : <float>, 
    "Value": [< >], 
    "Confidence": [< >], 
    "Valid": <Boolean>, 
    "TimestampStart": <Int64>, 
    "TimestampEnd": <Int64>, 
    "ToStore": <Boolean>, 
    "Priority": <Int>, 
    "Signature": {} 
} 

Figure 11 - Series Object Format Structure 

  



 

 

 Page 49 of 52 

LV Common Application Platform 
Public API 

Table 21 - Scalar Object Format Keys 

Key Status Description 

Timestamp Required Standard LV-CAP timestamp (see Section 4.5) when the series was 
produced. 

Interval Required Interval between values in the series. For time series, this is the time 
between samples in seconds (or decimals of them), for frequency 
spectrums Hertz and so on. 

StartPoint Required The x-axis co-ordinate of the first value in the series. For time series this 
is the timestamp of the first value, for frequency spectrums the 
frequency of the first bin and so on. 

Value Required An array of series values in base engineering units. The values can be of 
any scalar type (Boolean, Integer or Floating Point). 

Confidence Optional An array, the same size as the Value array, of values giving the 
confidence in the values. This may be used to represent the uncertainties 
caused by missing input data or inadequate system history. 

Valid Required A logical value, showing if the Series as a whole is thought to be valid for 
further use. 

TimestampStart Optional The standard LV-CAP timestamp of the earliest source data used to 
produce this series. 

TimestampEnd Optional The standard LV-CAP timestamp of the latest source data used to 
produce this series. 

ToStore Optional Flag used historically to indicate whether the data should be stored by 
the Data Storage Container or not. May be over-ridden by the Data 
Storage Container configuration. 

Priority Optional A priority indicator as in section 4.9, which allows the upload of certain 
messages to be prioritised by Data Upload Applications. 

Signature Reserved See Section 8.1.2 

This is deliberately an abstract data format designed to be capable of accommodating a wide range 
of different data types. The Value are always given in the base SI unit for the quantity being 
measured or calculated, as in Section 4.5Error! Reference source not found.. The units can be given e
xplicitly in the optional Data Series Metadata Object (Section 9.4). Some practical examples of its 
use are given in Figure 12 and Figure 13. 

Figure 12 shows the Series Object Format used for a predicted load profile.  

• It was calculated and published at 14:30:05 UTC on 8th March 2017. 

• The first predicted load segment in the prediction starts at 14:30:00 UTC on 8th March 2017 

• The prediction is composed of half-hourly (1800 seconds) load current values. 

• The prediction is for 4 hours, so has 8 values of load current in amps. 

• The predictor is confident in the prediction for the first two hours and the last one, but is 
aware of limitations in the data for the third hour (e.g. because there are problems with 
missing data in that hour). These reduce the confidence in those predictions. 

• Overall the predictor thinks that this data is valid for use. 



 

 

 Page 50 of 52 

LV Common Application Platform 
Public API 

• The prediction is built on the previous 4 weeks of data, so the oldest data used was from 
14:30:00 UTC on 8th March 2017. 

• The most recent data used was from 15:00:00 UTC on 1st March 2017, the end of the half 
hour period one week ago. 

• The prediction is not signed. 

The predictor does not stipulate whether this data is to be stored or not 

{ 
    "Timestamp": 1488983405, 
    "StartPoint": 1488983405, 
    "Interval" : 1800.0, 
    "Value": [120.0, 122.5, 125.7, 130.9, 124.8, 121.4, 118.6, 115.3], 
    "Confidence": [1.0, 1.0, 1.0, 1.0, 0.85, 0.75, 1.0, 1.0], 
    "Valid": true, 
    "TimestampStart": 1486564200, 
    "TimestampEnd": 1488380400 
} 

Figure 12 – Example of a Scalar Object used for a load prediction 

Figure 13 shows the Series Object Format used for a harmonic spectrum.  

• It was calculated and published at 11:00:00 UTC on 5th March 2017. 

• The first harmonic in the spectrum is 50Hz 

• The spectrum is composed of values for each harmonic, so every 50 Hz. 

• The spectrum is for the first 5 harmonics only. 

• The spectrum is calculated, so no confidence values are given. 

• Overall the calculation succeeded, so the data is valid for use. 

• The spectrum was calculated from the previous 10 minutes of data, so the oldest data used 
was from 10:50:00 UTC on 5th March 2017. 

• The most recent data used was from 10:59:59 UTC on 5th March 2017, the end of the 10-
minute period. 

• The publishing container thinks that this data should be stored in the Data Storage 
Container. 

• The publishing container has assigned this data the lowest available priority. 

• The spectrum is not signed. 

{ 
    "Timestamp": 1488711600, 
    "StartPoint": 50, 
    "Interval" : 50, 
    "Value": [76423.0, 122.5, 86.7, 57.9, 12.4], 
    "Valid": true, 
    "TimestampStart": 1488711000, 
    "TimestampEnd": 1488711599, 
    "ToStore": true, 
    "Priority": 5 
} 

Figure 13 – Example of a Scalar Object used for a harmonic spectrum 

9.3 Co-ordinate Object Format 

Where a group of co-ordinates are produced then a Co-ordinate Object provides a way to package 
them in a single JSON Object. The co-ordinates may be in a real space (e.g. Latitude and Longitude 
for geographic position) or a conceptual one (real and imaginary power in a power flow vector 



 

 

 Page 51 of 52 

LV Common Application Platform 
Public API 

diagram). To provide more metadata about the value and how it was arrived at, a separate Data 
Series Metadata Object should be used (see Section 9.4). 
{ 
    "Timestamp": <Int64>, 
    "Coordinates": [< >], 
    "System": <String>, 
    "Valid": <Boolean>, 
    "ToStore": <Boolean>, 
    "Priority": <Int>, 
    "Signature": {} 
} 

Figure 14 - Co-ordinate Object Format Structure 

Table 22 - Co-ordinate Object Format Keys 

Key Status Description 

Timestamp Required Standard LV-CAP timestamp (see Section 4.5Error! Reference source not f
ound.) when the reading was made. 

Coordinates Required Array of co-ordinate values, in base engineering units. The co-ordinate 
values will be Integer or Floating-Point values. 

System Optional The co-ordinate system being used, e.g. Cartesian (for x-y plots) or 
WGS84 latitude and longitude. 

Valid Required A logical value, showing if the Value is within the expected range 
(configured). 

ToStore Optional Flag used historically to indicate whether the data should be stored by 
the Data Storage Container or not. May be over-ridden by the Data 
Storage Container configuration. 

Priority Optional A priority indicator as in section 4.9, which allows the upload of certain 
messages to be prioritised by Data Upload Applications. 

Signature Reserved See Section 8.1.2 

No implementation of this Object Format yet exists. 

9.4 Data Series Metadata Object Format 

There will be various pieces of metadata (that is, information about the data) associated with the 
data published on a given topic. It may be desirable to transmit these in a machine-readable format, 
so that consuming Applications can make use of them. However, this metadata does not change 
from reading to reading, so it would be inefficient to transmit (and especially store) them alongside 
the readings themselves. Instead a separate /meta/ sub-topic is used for metadata, which is 
transmitted as Data Series Metadata Objects. 

The metadata objects are sent only when an Application starts, or there is a change to the metadata. 
In order that subscribing Applications always receive this information, the messages are published 
with the Retained flag set to true. This means that the Data Marketplace will automatically send a 
copy of the latest metadata to any new client which subscribes the /meta/ sub-topic, without any 
effort from the publishing Application. 



 

 

 Page 52 of 52 

LV Common Application Platform 
Public API 

{ 
    "Name": <String>, 
    "Units": <String>, 
    "DisplayUnits": <String>, 
    "SigFigs": <Integer>, 
} 

Figure 15 - Data Series Metadata Object Format Structure 

9.5 Application Configuration Format 

All configuration files must be valid JSON objects. Application configuration data will differ 
significantly from Application to Application depending on their structure, and only be of use to the 
Application it is intended for. To accommodate this, the structure of the configuration file for each 
container is largely up to the Application author, but a standard top-level structure is required in 
order to deliver updated configuration information to the correct container. Application authors are 
free to structure the ContainerConfig object within their configuration in whatever way suits their 
application, provided that it is a valid JSON object. 
{ 
 "ContainerName": "<IID>", 
 "ContainerConfig":  
 { 
  "<examplekey1>": <configvalue1>, 
  "<examplekey2>": <configvalue2>, 
  "<examplekeyN>": <configvalueN> 
 } 
} 

Figure 16 - Third Party Container Configuration File Example 

Table 23 - Third Party Configuration File Keys 

Key Status Description 

ContainerName Required IID of the Application the configuration is for. 

ContainerConfig Required JSON object containing the Application Instance configuration. This 
object's contents and structure will change from Application to 
Application. 

10. References 

The following external resources provide more information to support this specification: 
1. The MQTT Standard, version 3.1.1: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-

v3.1.1-os.html  
2. ECMA Standard 404, "The JSON Data Interchange Format" http://www.ecma-

international.org/publications/files/ECMA-ST/ECMA-404.pdf  
3. Blog Post "MQTT Topics & Best Practices" http://www.hivemq.com/blog/mqtt-essentials-

part-5-mqtt-topics-best-practices  
4. Docker Documentation for docker tag command: 

https://docs.docker.com/v1.12/engine/reference/commandline/tag/ and 
https://docs.docker.com/v17.03/engine/reference/commandline/tag/ 

 

 

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices
http://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices


 

1 

 

 

 

 

 

 

 

 

 


