
Developing with the LV-CAP
Virtual Machine
Version 2622-MANUL-S0001-
V02.03.01

 Page 2 of 28

Developing with the LV-CAP Virtual Machine

Document Control

 Name Date

Prepared by: Richard Ash 06.02.2018

Reviewed by: Richard Potter 07.02.2018

Approved by: Daniel Hollingworth 07.02.2018

Revision History

Date Issue Status

07.02.2018 V02.03.01 Issued

Report Title : Developing with the LV-CAP Virtual
Machine

Report Status : Issued

Project Ref : WPD/EN/NIC/02 - OpenLV

Date : 07.02.18

 Page 3 of 28

Developing with the LV-CAP Virtual Machine

1 Contents

1 Introduction ... 5
2 Platform Overview ... 5
3 Running the Virtual Machine ... 7

3.1 Importing the Virtual Machine ... 7
3.2 Starting the Virtual Machine .. 8
3.3 Shutting down the Virtual Machine ... 8

4 Accessing the Virtual Machine ... 10
4.1 User Account .. 10
4.2 Terminal access to the host OS .. 10
4.3 SSH Access to the host OS .. 10
4.4 Copying files using SCP to the host OS ... 10

5 Running a new Application on the Platform.. 12
5.1 Authorising the Application .. 12
5.2 Deploying the Application .. 14

6 Updating an Application running on the Platform .. 16
7 TLS Certificate Creation ... 17

7.1 Certificates for Development ... 17
7.1.1 Creating Key and Signing Request Manually .. 17
7.1.2 Creating Key and Signing Request using the Template Makefile 18
7.1.3 Signing Development Certificates ... 18

7.2 Certificates for Production Deployment .. 18
8 Viewing MQTT Message Traffic ... 19

8.1 Terminal .. 19
8.2 MQTT.fx .. 19

9 Input Data for Testing .. 23
9.1 LV-CAP Data Replay Tool .. 23
9.2 Data format .. 23
9.3 Playing back data .. 24

9.3.1 Command Line Options .. 24
9.3.2 Examples ... 24
9.3.3 Preparing Input files .. 25

9.4 Installing the replay tool... 26
9.4.1 Installing on Ubuntu.. 26
9.4.2 Installing on other Linux Systems ... 26

Appendix 1 Example Container Manager Configuration .. 27

 Page 4 of 28

Developing with the LV-CAP Virtual Machine

DISCLAIMER

Neither WPD, nor any person acting on its behalf, makes any warranty, express or implied, with respect to the use of any
information, method or process disclosed in this document or that such use may not infringe the rights of any third party
or assumes any liabilities with respect to the use of, or for damage resulting in any way from the use of, any information,
apparatus, method or process disclosed in the document.

© Western Power Distribution 2018
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means
electronic, mechanical, photocopying, recording or otherwise, without the written permission of the Future Networks
Manager, Western Power Distribution, Herald Way, Pegasus Business Park, Castle Donington. DE74 2TU.
Telephone +44 (0) 1332 827446. E-mail wpdinnovation@westernpower.co.uk

mailto:wpdinnovation@westernpower.co.uk

 Page 5 of 28

Developing with the LV-CAP Virtual Machine

2 Introduction

The Low Voltage - Common Application Platform (LV-CAP) is a hardware-agnostic software

environment designed to accelerate the deployment of the Smart Grid on electricity

networks. It does this by:

1. Allowing multiple "Smart" Applications to be deployed on a single set of hardware

and sensors, eliminating costly duplication.

2. Decoupling the challenging but application-agnostic areas of communications and

data storage from the development of innovative monitoring and control algorithms.

3. Making it easy to deploy new and updated algorithms to existing equipment without

expensive field visits.

4. Providing a common software abstraction for a range of hardware implementations,

so that the optimum hardware and software can be procured separately, rather than

as a compromise bundle.

5. Allowing a wide range of parties to compete to supply Applications to run on a

single set of hardware owned by the system operator.

The interface to LV-CAP and the standards required is set out in the API document 2383-

MANUL LV Common Application Platform Public API.

This document details how to start developing for the LV-CAP platform using a Virtual

Machine image supplied by EA Technology. This Virtual Machine image gives developers a

representative environment on which to test and debug their Applications on and ensure

their Application integrates with the rest of the system.

3 Platform Overview

The Low Voltage - Common Application Platform (LV-CAP) provides a framework for

measurements to be made, processed through algorithms, and actions taken based on the

results (Figure 1). All of these functions may be undertaken by Applications developed by

EA Technology or third parties. LV-CAP provides a number of core services for third party

Container developers to utilise. These are:

1. Container management (installation, configuration, starting and running of

Applications, including multiple copies and versions.).

2. A Data Marketplace which allows all Applications on the platform to communicate

with each other in a uniform manner.

3. A Data Storage mechanism which allows Application outputs to be stored for future

use.

All other functionality is provided by Applications, but using standard interfaces so that

different implementations can be swapped in and out without affecting other Applications.

To achieve this Applications do not communicate directly but rather via the Data

Marketplace as shown in Figure 2. Typically one or more Sensor Applications will be used to

ingest measurement data, which will pass to Algorithm Applications. The outputs of these

Algorithm Applications will then be used to drive Output Applications or uploaded to central

data stores by Communications Applications.

More detail on the working of LV-CAP can be found in document 2383-MANUL LV Common

Application Platform Public API, hereafter "the LV-CAP API".

 Page 6 of 28

Developing with the LV-CAP Virtual Machine

Figure 1 - LV-CAP System Concept

Figure 2 - LV-CAP Software Architecture

 Page 7 of 28

Developing with the LV-CAP Virtual Machine

4 Running the Virtual Machine

The Virtual Machine image supplied by EA Technology is in the Open Virtualization Format

2.0 (.ova) file format. It is recommended that Oracle’s VirtualBox

(https://www.virtualbox.org) version 5 is used for importing and running the Virtual

Machine, as this is where testing has been undertaken.

4.1 Importing the Virtual Machine

The Virtual Machine .ova file requires importing into VirtualBox before it can be used. Once

downloaded follow the below steps to import the .ova file:

1. Launch Virtual Box then Navigate to “File” -> “Import Appliance”

2. Once the “Import Virtual Appliance” window has launched select the LV-CAP Virtual

Machine .ova file then click “Next”.

3. The Virtual Machine settings will then be displayed. This allows any of the

configuration parameters to be modified to suit the computer it is to be run on such

as RAM, CPU or Network Adapters. The Virtual Machine is supplied configured for

Bridged networking and to request an IPv4 network address on boot using DHCP.

This will generally work on wired networks but may require adjustment if you are on

https://www.virtualbox.org/

 Page 8 of 28

Developing with the LV-CAP Virtual Machine

a Wireless network.

4. It is recommended to tick the box "Reinitialize the MAC address of all network cards"

to ensure there are no conflicts with other Virtual Machines on your system.

5. Once happy with the configuration, click Import. A progress dialog will display and

then once complete the Virtual Machine will show in the machine list in VirtualBox’s

main window.

4.2 Starting the Virtual Machine

To start the Virtual Machine, select it in the list of available machines then click the green

“Start” arrow at the top of the VirtualBox window. Upon starting the Virtual Machine, a new

window will open to display its output.

4.3 Shutting down the Virtual Machine

To shut down the Virtual Machine, click the “X” icon in the top right of the Virtual Machine

output window. Three options will be presented:

1. “Save the machine state” – This will store the current state of the Virtual Machine and

power if off. This allows the Virtual Machine to be powered back on and pick up

from its previous state.

2. “Send the shutdown signal” – This will send the shutdown signal to the Virtual

Machine’s OS, equivalent to shutting down from the command line.

3. “Power off the machine” – This kills the Virtual Machine without any shutdown of the

OS. This is not recommended, and data loss may result.

 Page 9 of 28

Developing with the LV-CAP Virtual Machine

Select the desired option, and then click “OK” to perform the action.

 Page 10 of 28

Developing with the LV-CAP Virtual Machine

5 Accessing the Virtual Machine

Like the production LV-CAP environment, the virtual machine does not have a graphical user

interface installed. There is no point to a graphical interface on a system which is installed

in a locked, unmanned substation!

There are a number of ways the LV-CAP platform can be accessed for editing/copying files

on the platform, and viewing the status of the platform. These are covered in the sections

below.

5.1 User Account

A default development account exists on the system. This has sudo rights and so can be

used to create other user accounts as required. On first login you will be forced to change

the password to keep the virtual machine secure. The first login should be made using the

following credentials:

 Username: development

 Password: OpenLVdevelopment

5.2 Terminal access to the host OS

Once the Virtual Machine has booted, a terminal prompt will be displayed in the VirtualBox

window. This allows login into the host OS of the platform in text mode. This requires no

further settings, but the terminal is not sophisticated, and there is no means to copy files.

5.3 SSH Access to the host OS

The host OS can be accessed using an SSH session from host machine of the Virtual

Machine, or another computer on the same network (depending on your network settings).

To do so the IPv4 address of the Virtual Machine must be determined. This can be found by

running the command ip addr sh enp0s3 once logged into the host OS terminal (as

detailed in section 5.1). This will produce an output like that shown in Figure 3.

Figure 3 - Determining the Virtual Machine IP Address

On the third line of output can be seen the label "inet" followed by the value

"172.16.2.122/16". The numbers will be different on your system. The part of the value

before the "/" is the IPv4 address, i.e. "172.16.2.122" in this case.

An SSH client (e.g. the open source Putty client) can be used to connect to this IP address.

When prompted, log in using the user account credentials listed above.

5.4 Copying files using SCP to the host OS

Files can be copied to the host OS using an SCP session from the host machine of the Virtual

Machine or another computer on the same network. To do so the IP address of the Virtual

 Page 11 of 28

Developing with the LV-CAP Virtual Machine

Machine must be determined as described in section 5.3 above. Once the IP address is

known, a SCP client (e.g. the open source WinSCP or Filezilla clients) can be used to connect

to this IP address. When prompted, log in using the user account credentials listed above.

 Page 12 of 28

Developing with the LV-CAP Virtual Machine

6 Running a new Application on the Platform

The development Virtual Machine is, unlike a production system, not connected to a central

management control server. This server would normally be the only route by which the

Platform can be updated or reconfigured. For the development Virtual Machine the normal

Management Communications Application is replaced by a dummy communications

Application. This does not in fact communicate to anywhere, but watches certain local

directories for new files. When new files are detected, the same MQTT messages are passed

into the rest of the system as would be produced by the normal Management

Communications Application.

6.1 Authorising the Application

The LV-CAP system has a process of Authorisation in order to control what applications can

run on the system, and in particular:

• Authorising Applications to connect to the Data Marketplace.

• Controlling what topics each Application can publish and subscribe to.

The development Virtual Machine is shipped with a configuration file which includes

Authorisation for the known Applications at the time the Virtual Machine image was created.

However, it will be necessary to manually authorise new Applications which are being

developed before they can connect to the MQTT broker. Once an Application has been

accepted for deployment on LV-CAP the Authorisation will be added to the system so that

production systems do not need manual Authorisation.

The process for Authorising a new Application on the development Virtual Machine is as

follows:

1. Make sure that the Instance ID and Application ID of the new Application are known.

2. Inspect the Data Marketplace Application Container to determine where its

configuration files are being stored (this path is different on different machines).

This can be done with the command

docker inspect dd7e7e53-7de2-456e-9e9b-01a136f1cd84 | jq '.[0]."Mounts"[] |

select(.Destination == "/etc/mosquitto") ."Source" '

3. Edit the containers.acl located in the directory given by the above command

sudoedit $(docker inspect dd7e7e53-7de2-456e-9e9b-01a136f1cd84 | jq -r

'.[0]."Mounts"[] | select(.Destination == "/etc/mosquitto") ."Source"

')/containers.acl

 Page 13 of 28

Developing with the LV-CAP Virtual Machine

4. Scroll down to the end of the file. In this file, lines starting with a '#' are treated as

comments. You will find a commented out block of template rules as shown below:

5. Copy these rules and paste them to form the Authorisation rules for your new

Application.

6. Add a comment before the pasted rules to say which Application they authorise.

7. Remove the '#' from the 'user' line. Replace '<APID> with the new Application's

Application ID.

8. Enable the core topic access defined in the LV-CAP API section 8.2. To do this

remove the '#' from the 'topic' lines labelled with API Section 8.2.x. Replace <IID>

each time it occurs with the new Application's Instance ID.

9. Set up access to sensor data (API Section 8.3). For Algorithm Applications this means

read access only, as shown below. If a Sensor Application is being developed, then it

should have write access to only its own Instance area of the sensor topics.

user <APID>
API Section 8.2.1
#topic read config/response/<IID>
#topic write config/request/<IID>
API Section 8.2.2
#topic read status/request
#topic write status/response/<IID>
API Section 8.2.3
#topic read command/<IID>
API Section 8.2.4
#topic write storage/data/error/<IID>
API Section 8.3 Sensor Data
#topic write sensor/data/<IID>/#
#topic read sensor/data/#
API Section 8.4 Algorithm output
#topic write algorithm/data/<IID>/#
#topic read algorithm/data/#
API Section 8.5 Data Upload
#topic write storage/request/newdata/<IID>
#topic read storage/response/newdata/<IID>
#topic write storage/uploaded/<IID>
API Section 8.6
#topic write storage/data/<IID>
#topic write storage/request/<IID>
#topic read storage/response/<IID>

rules for EATL Skeleton Application

user eatl_skeleton

API Section 8.2.1
topic read config/response/eatl_skeleton_00
topic write config/request/eatl_skeleton_00
API Section 8.2.2
topic read status/request
topic write status/response/eatl_skeleton_00
API Section 8.2.3
topic read command/eatl_skeleton_00
API Section 8.2.4
topic write storage/data/error/eatl_skeleton_00

API Section 8.3 Sensor Data
#topic write sensor/data/<IID>/#
topic read sensor/data/#

 Page 14 of 28

Developing with the LV-CAP Virtual Machine

10. Set up access to Algorithm data (API Section 8.4). Applications have read access to

all topics, and write access to only their own Instance area.

11. This is all that is normally required for Algorithm Applications. Applications which

fulfil the Data Upload role, or which need access to values stored in the Data Storage

Application, will need other lines to be uncommented in line with the API

documentation. The completed rules look like this:

12. Save the file and exit the editor.

13. Re-start the Data Marketplace Application so that it re-reads its configuration:

docker restart dd7e7e53-7de2-456e-9e9b-01a136f1cd84

14. The other core Applications will re-connect to the Data Marketplace, and the system

is now ready to deploy the new Application. It is recommended to keep a copy of

your modified containers.acl file for future reference.

15. If the Data Marketplace is upgraded, then the modifications to the file will have to be

re-done.

6.2 Deploying the Application

Once the development system has been Authorised to run the new application, the

Application can be deployed.

As described in the LV-CAP API, the Container Manager is responsible for starting and

stopping of all Applications. The Container Manager is informed of the Applications which

should be running via it's configuration file. Details of the format of this configuration file

can be found below. It is important that the steps described below are performed in the

correct order, in order to emulate the operation of the normal Management

Communications Application and central management server.

The process for deploying a new Application to the platform is as follows:

1. Package the Application as a Docker image file with a .tar extension, named with the

Application ID as specified in section 4.2 of the LV-CAP API.

API Section 8.4 Algorithm output
topic write algorithm/data/eatl_skeleton_00/#
topic read algorithm/data/#

rules for EATL Skeleton Application
user eatl_skeleton
API Section 8.2.1
topic read config/response/eatl_skeleton_00
topic write config/request/eatl_skeleton_00
API Section 8.2.2
topic read status/request
topic write status/response/eatl_skeleton_00
API Section 8.2.3
topic read command/eatl_skeleton_00
API Section 8.2.4
topic write storage/data/error/eatl_skeleton_00
API Section 8.3 Sensor Data
#topic write sensor/data/<IID>/#
topic read sensor/data/#
API Section 8.4 Algorithm output
topic write algorithm/data/eatl_skeleton_00/#
topic read algorithm/data/#

 Page 15 of 28

Developing with the LV-CAP Virtual Machine

2. Copy the running Container Manager configuration file from

/home/CM/LVCAP_config/75e81145-e85f-42ff-b992-d9d12c865c0e/config.json to a

local file named 75e81145-e85f-42ff-b992-d9d12c865c0e.json.

3. Edit the configuration to add the JSON object shown in Figure 4 below into the

"Containers" JSON Array.

Figure 4 - Example Application definition

• containerName – The Instance ID (for legacy Applications, GUID) of this

Application.

• File – name of the image file for the Application. For legacy application

<GUID>.tar.

• imageTimestamp – The Unix time (in seconds) when the image was created.

• DockerParams

o containerName – The same as the containerName above.

o imageID – The Docker tag (including version) of the image, as

supplied to the -t option of the docker build command.

An example Container Manager configuration is contained in 11 of this document.

4. Once modified, copy the Container Manager configuration 75e81145-e85f-42ff-

b992-d9d12c865c0e.json to the /tmp/LVCAP_config/ directory. It is important that

no other files are copied at this time!

5. At the next check for local updates (1-minute update frequency) the dummy

Communications Application will notice the file and notify the Container Manager.

6. The Container Manager will load its new configuration and add the new Application

to the list of files to be downloaded from the server. It cannot yet be run because the

new Application image and configuration have not yet been downloaded.

7. Now copy the Application image .tar to /tmp/LVCAP_images/ on the Virtual Machine,

and the Application’s JSON configuration file to /tmp/LVCAP_config/. This simulates

the files being downloaded from the central management server on request.

8. On the subsequent check cycle, the Application image and configuration file will be

announced to the Container Manager, which will process them.

9. The Application will then be started by the Container Manager.

{
 "containerName": "<Instance ID>",
 "File": "<Application ID>.tar",
 "imageTimestamp": <timestamp of the created
container>,
 "DockerParams": {
 "containerName": "<Instance ID>",
 "imageID": ""<Application ID>:<Version>"
 }
},

 Page 16 of 28

Developing with the LV-CAP Virtual Machine

7 Updating an Application running on the Platform

As described in the LV-CAP API, the Container Manager is responsible for updating

containers and their configuration. When updates exist, the Container Manager must be

informed so they can be deployed.

The process for updating the configuration of a running Application is simplest:

1. Copy the Application configuration to /tmp/LVCAP_config/ on the Virtual Machine.

The file name must be the same as the original, i.e. <Instance ID>.json

2. At the next check for local updates (1-minute update frequency) the updated

configuration will be sent to the running container.

The process for updating an Application image on the platform is as follows:

1. Package the Application as a Docker image file with a .tar extension, named with the

Application ID as specified in section 4.2 of the LV-CAP API.

2. Copy the running Container Manager configuration file from

/home/CM/LVCAP_config/75e81145-e85f-42ff-b992-d9d12c865c0e/config.json to a

local file named 75e81145-e85f-42ff-b992-d9d12c865c0e.json.

3. Edit the configuration by updating the Application's “imageTimestamp” to the

created timestamp of the updated image file, and setting the correct ImageID for the

new Application version.

4. Once modified, copy the Container Manager configuration to the

/tmp/LVCAP_config/ directory. It is important that no other files are copied at this

time!

5. At the next check for local updates (1-minute update frequency) the dummy

Communications Application will notice the file and notify the Container Manager.

6. The Container Manager will load it's new configuration and add the updated image

to the list of files to be downloaded from the server. It cannot yet be run because the

new Application image has not yet been downloaded.

7. Upload the Application image .tar to /tmp/LVCAP_images/ on the Virtual Machine

8. At the next status check (1-minute update frequency) the out of date Application will

be shut down, the new image loaded, and the new Application started in its place.

 Page 17 of 28

Developing with the LV-CAP Virtual Machine

8 TLS Certificate Creation

All Applications running on LV-CAP are required to connect to the MQTT broker using TLS

certificates, as described in the LV-CAP API (EA Technology drawing 2383-MANUL LV

Common Application Platform Public API). Each Application must have its own secure key

and TLS certificate. In order to develop Applications a simple “self-service” certificate issuing

system has been created. For production deployment these certificates are not permitted,

and must be replaced with certificates issued by EA Technology from a controlled issuer.

8.1 Certificates for Development

The development Virtual Machine includes a set of certificate authority files which can be

used by developers to create TLS certificates signed by the Development Certificate

Authority. These are stored in a compressed archive

/home/CM/2726_TLS_certificate_authority.tar.xz (also available separately). To start work

this must be unpacked into the developer's private workspace.

Once unpacked there is a directory OpenLV_TLS_certificate_authority which contains the

following files:

• broker-ca.pem – The TLS certificate used by the MQTT broker. Applications need to

use this certificate to authenticate the MQTT broker when connecting to it.

• rootCA.key – The private key for the development certificate authority. The

passphrase for this key is “OpenLV5cert!”, which has to be entered when creating

certificates.

• rootCA.pem – The root certificate for the development certificate authority, which all

the other certificates are signed by.

• rootCA.srl – Serial number tracking file used to automatically give each certificate a

unique serial number.

• Makefile – Automation file which automates the process of signing certificates

without typing cryptic commands.

The first steps in obtaining a certificate set for a container are to create a private key and a

certificate signing request. This can either be done manually, or automated with a Makefile

template provided by EA Technology.

8.1.1 Creating Key and Signing Request Manually

To create a key and Certificate Signing Request (CSR) using the OpenSSL tools:

1. Generate a 2048 bit RSA private key. This key is for a specific Application image. It is

important that this key is not disclosed because anyone in possession of this key can

impersonate your Application. The name of this file is not important, but your

Application will need to have access to this key.

openssl genpkey -algorithm rsa -pkeyopt rsa_keygen_bits:2048 -out <filename.key>

2. Create a certificate signing request. This explains to the certificate authority exactly

what you want the certificate to say.

openssl req -new -key <filename.key> -out <filename.csr>

3. This will prompt for a number of pieces of information about the organisation

requesting the certificate (i.e. the Application author). The most important field is

the Common Name. This must be set to the Application ID as described in the LV-

CAP API documentation.

a. For legacy Applications this is the assigned 48-byte GUID string.

b. For new Applications it is the combination of the Vendor, Application Name

and Application Version separated with underscores, e.g.

eatl_testcontainer_0.1

c. The email, challenge password and optional company name can be left blank.

 Page 18 of 28

Developing with the LV-CAP Virtual Machine

4. This will produce the Certificate Signing Request <filename>.csr. The name of this

file is not important.

8.1.2 Creating Key and Signing Request using the Template Makefile

The TLS Template is provided as the compressed archive 2745-SWREL-<version>-

TLS_template.tar.xz. This unpacks to produce a top-level directory template/, which in turn

contains two directories named LV-CAP/ and 2745_tls_template/. The former contains

supporting files which should not be modified, the latter a Makefile to create TLS

Certificates for LV-CAP.

To use the Template Makefile:

1. Unpack the template archive into the developer's workspace.

2. Edit file template/2745_tls_template/Makefile to set the variables at the top:

3. The five variables which start with "TLS" are used to populate the TLS certificate

fields with information about the organisation developing the Application.

4. The variable VENDOR must be set to the Vendor string as defined in section 4.2 of

the LV-CAP API. This will be assigned to the organisation developing the

Application.

5. The variable APP_NAME must be set to the Application Name string as defined in

section 4.2 of the LV-CAP API. This is chosen by the organisation developing the

Application.

6. The variable APP_VER must be set to the Version string as defined in section 4.2 of

the LV-CAP API. This is chosen by the organisation developing the Application.

7. Change directory to the 2745_tls_template/ directory and run the command make

8. This will generate a key for the Application, named Vendor_Application Name.key,

and a certificate signing request named Vendor_Application Name.csr.

8.1.3 Signing Development Certificates

Whichever way the certificate signing request is made, the end result is a .csr file which

needs to be converted into a certificate file. This can be done manually using the OpenSSL

tools, but the commands are complex so a Makefile has been created to automate the

process when using the

1. Unpack the certificate authority archive 2726_TLS_certificate_authority.tar.xz into

the developer's private workspace.

2. Copy the Certificate Signing Request (.csr file) into the

OpenLV_TLS_certificate_authority/ directory.

3. Change working directory into the same directory.

4. Run the command: make <name>.crt

5. This will prompt for the passphrase for the private key, which is “OpenLV5cert!”

6. The result is to create the certificate <name>.crt from <name.csr>.

7. Copy the certificate <name>.crt back to the Application's build directory.

8. If a certificate is required with validity other than the default 90 days, then the DAYS

variable may be set on the make command line: make <name>.crt DAYS=30

8.2 Certificates for Production Deployment

The process for obtaining production certificates starts the same as for development, with

the generation of a private key and Certificate Signing Request. However instead of signing

using the Development Certificate Authority, the Certificate Signing Request must be sent to

the organisation operating the production Certificate Authority for signing (currently EA

Technology). They will then return the signed certificate to be used in the production

Application.

 Page 19 of 28

Developing with the LV-CAP Virtual Machine

9 Viewing MQTT Message Traffic

To view traffic on the TLS MQTT broker it is necessary to authenticate as a user with

sufficient rights when connecting to the broker. A set of suitable TLS certificates and scripts

for doing this are contained within the development tools bundle

2746-SWREL-Vxx.xx.xx-OpenLV_TLS_devtools.tar.xz

9.1 Terminal

Messages can be viewed on the text mode terminal of the Virtual Machine, via any of the

methods described in section 4.

1. Unpack the tarball containing the development tools bundle.

2. Change directory into 2746-SWREL-Vxx.xx.xx-
OpenLV_TLS_devtools/2746_devtools/

3.

a. To view all messages on the MQTT broker, run make sub-all
b. To view sensor messages on the MQTT broker, run make sub-sensor
c. To view algorithm data messages on the MQTT broker, run make sub-alg

4. When you want to stop, press CTRL+C to return to the command prompt.

Each message is output on a new line, which starts with the name of the topic it was

published on, followed by a space and then the payload of the message.

9.2 MQTT.fx

MQTT.fx is a graphical MQTT client which allows interactive subscription and publishing of

messages on a MQTT broker. Because it is a graphical application, it cannot be run on the

Virtual Machine itself. Instead it must be run on the host machine of the Virtual Machine or

another computer on the same network.

MQTT.fx for Windows, Linux or Apple Mac can be downloaded from http://mqttfx.org/.

To connect to the MQTT broker on the Virtual Machine the IP address of the Virtual Machine

must be determined as described in section 5.3 above. Once the IP address is known,

MQTT.fx can be configured to connect to the TLS MQTT broker.

1. Click on the cog-wheel button to the left of the Connect button at the top of the

main window, or go to Extras > Edit Connection Profiles.

2. This will open the Connection Profile editor window. Click the blue + button at the

bottom left to create a new profile. Make sure it is selected (blue) in the left hand

 Page 20 of 28

Developing with the LV-CAP Virtual Machine

pane before continuing:

3. Fill out the four fields at the top of the window as follows:

Name: OpenLV TLS (can be anything you want it to be)

Broker Address: Virtual Machine IP Address you have identified

Broker Port: 8883

Client ID: eatl_tlsdevtools

4. In the lower part of the window, leave the General tab settings as defaults:

Connection Timeout: 30

Keep Alive Interval: 60

Clean Session: Ticked

MQTT Version: Use Default Ticked

 Page 21 of 28

Developing with the LV-CAP Virtual Machine

5. Move on to the User Credentials tab. Set User Name to eatl_tlsdevtools and leave

Password blank.

6. Move on to the SSL/TLS tab. Tick the Enable SSL/TLS box and more controls will

appear. Select the Self signed certificates radio button.

Browse for the CA File and select the broker-ca.pem file from the development tools.

Browse for the Client Certificate File and select the file eatl_tlsdevtools.crt

Browse for the Client Key File and select the file eatl_tlsdevtools.key

Leave Client Key Password blank.

Tick the PEM Formatted box.

7. Do not set anything on the Proxy or Last Will and Testament tabs.

8. Click OK.

9. Back in the main window, select the OpenLV TLS entry from the list and click

Connect.

You are now connected and authenticated over TLS and can publish and subscribe on any

topic of the MQTT broker.

 Page 22 of 28

Developing with the LV-CAP Virtual Machine

Figure 5 - MQTT.fx after connection

Figure 6 - MQTT.fx failed connection

Figure 7 - MQTT.fx publish topic and payload

Figure 8 - MQTT.fx Subscription with incoming message

Figure 9 - MQTT.fx incoming payload package

 Page 23 of 28

Developing with the LV-CAP Virtual Machine

10 Input Data for Testing

Real LV-CAP systems will have one or more Sensor Applications running, whose purpose is

to receive data from measurement hardware and make it available on the Data Marketplace

for applications to receive. The LV-CAP virtual development environment of course does not

have any measurement hardware available to it. In order to test applications, a tool has

been developed which accepts Comma Separated Variable (CSV) format data and publishes

it onto the Data Marketplace either in real time or faster than real time.

By using the replay tool, it is possible to provide reproducible conditions for testing

software, which can be re-run as many times as required and much more quickly than using

real input hardware. The format of the CSV files is the same as that written by the EA

Technology CSV Data Recorder Application (EATL Dwg. 2660), so that it is possible to record

data from real hardware installations and then replay it on the virtual development

environment.

10.1 LV-CAP Data Replay Tool

The LV-CAP Data Replay tool is part of the TLS Development Tools package, released as

2746-SWREL-S011-Vxx.xx.xx-OpenLV_TLS_devtools.tar.xz

The Data Replay tool itself is a Python 3 script named play_csv.py.

The necessary dependencies to run the script are already installed on the virtual

development environment, so the package archive simply needs to be unpacked. If it is

necessary to run the tool on other systems, then installation instructions can be found

below.

10.2 Data format

CSV files to be played back must adhere to the following structure to be played correctly:

• The first row of the file is a header.

• The heading of the second column sets the topic on which the data from the second

and third columns will be published, the heading of the fourth column sets the topic

on which the data from the fourth and fifth columns will be published and so on for

all the columns.

• The first column must contain the timestamp for the row, in UTC. The format should

be YYYY/MM/DD HH:MM:SS.

• There is no requirement for regular time intervals between rows, but the timestamp

must be monotonically incrementing (i.e. each row's timestamp must be greater than

the row before!).

• The second column contains the Value member of the JSON to be sent on the first

topic, and so on for all the other even-numbered columns.

• The third column contains a logical value which sets the Valid flag of the JSON to be

sent on the first topic, and so on for all the other odd-numbered columns.

• Empty fields will be skipped, with no payload sent.

 Page 24 of 28

Developing with the LV-CAP Virtual Machine

10.3 Playing back data

10.3.1 Command Line Options

The replay tool accepts the command line options described below (see also the -h / --help

option output for a full list of available options).

Several of the options are related to connecting to the Data Marketplace MQTT broker.

These will normally be set to use the certificates in the TLS Development Tools package as

described in Section 9.

--host HOST The host name of the MQTT broker to connect to.

-p PORT

--port PORT

The TCP port number to connect to MQTT broker on.

--cafile CAFILE Path to a file containing PEM encoded CA certificates which

are trusted. Used to prove the MQTT broker is authentic.

--cert CERT Path to a file containing a PEM encoded certificate for this

client to prove its identity to the MQTT broker.

--key KEY Path to a file containing the PEM encoded private key used

by this client to prove its identity to the MQTT broker.

For the purpose of debugging the script, the -l / --log / --no-log options can be used to

control loge messages from the underlying MQTT library. None of these options should

need to be set for normal use.

The other options control the data which is to be played back:

-i INFILE

--infile INFILE

The name of an input CSV file containing data to replay.

This must be specified!

-s

--store
--no-store

Control the ToStore element of the output JSON payloads

sent, controlling whether the data replayed is stored by the

Data Storage Application.

-f TIME_FACTOR

--time-factor

TIME_FACTOR

Set a time scaling factor for the replay.

The most powerful option is setting TIME_FACTOR. If this is set to a factor of 10, then the

data will be replayed at 10 times real time. This means that if the input file has data at 10

minute intervals, the MQTT messages will be sent at 1 minute intervals. The time stamps in

the payloads will still be the original file timestamps, i.e. 10 minutes apart.

10.3.2 Examples

The examples assume you have logged in to the virtual development environment and

changed directory to the "2746_devtools" directory created when the TLS development tools

archive is unpacked. To connect to the Data Marketplace on the virtual development

environment, using the certificates from the TLS development tools, the following options

are needed:

 Page 25 of 28

Developing with the LV-CAP Virtual Machine

--host marketplace --port 8883 --cafile broker-ca.pem --cert
eatl_tlsdevtools.crt --key eatl_tlsdevtools.key
To play back the file "input-28day.csv" from the current directory, at a rate of one hour per

second, not storing the data in the Data Storage Application, use the following command:

./play_csv.py --host marketplace --port 8883 --cafile broker-ca.pem --cert

eatl_tlsdevtools.crt --key eatl_tlsdevtools.key --no-store -i input-

28day.csv -f 3600
To play back the file "input-1day-w5d1.csv" from the current directory, at a rate of one

minute per second, storing the data in the Data Storage Application, use the following

command:

./play_csv.py --host marketplace --port 8883 --cafile broker-ca.pem --cert
eatl_tlsdevtools.crt --key eatl_tlsdevtools.key --store -i input-1day-
w5d1.csv -f 60

10.3.3 Preparing Input files

CSV files to be used as input to the data replay tool can be obtained from the output of the

EA Technology CSV Data Recorder Application (EATL Dwg. 2660), or created off-line using

any suitable tools.

An Open Document Spreadsheet file which creates 7 days' worth of load currents is included

in the TLS Development Tools package named load-current-generator.ods. The column

headers as supplied are for load current measurements made using the Lucy GridKey Sensor

Application, but can easily be changed for other data points. The load currents produced

are based on the standard daily load curves used in underground cable ratings, repeated for

each of the 7 days in succession.

To use this spreadsheet to produce input data for the replay tool:

1. Open the spreadsheet in LibreOffice Calc

2. Adjust settings in the blue cells on the "Control" worksheet to set:

• The desired load curve shape for each phase.

• The peak load current for each phase.

• The start date/time (in UTC).

• The time interval between data points (should be an integer factor of 1 hour

for correct operation).

3. Switch to the "export" worksheet.

4. Click File > Save a Copy …

5. Change Save as type to "Text CSV"

6. Enter file name and click Save

7. In export dialogue:

• Character set: Western Europe

• Field delimiter: ,

• Text delimiter: "

• Tick Save cell content as shown and untick the others

• Click OK

8. When it warns only the selected sheet was saved, click OK.

The resulting file always has exactly 7 days of data with a header, but the files can easily be

modified to produce other duration data sets.

 Page 26 of 28

Developing with the LV-CAP Virtual Machine

10.4 Installing the replay tool

10.4.1 Installing on Ubuntu

Most of the required packages can be installed on the target operating system, Ubuntu

16.04 LTS, from the Ubuntu repositories with the following command:

sudo apt install python3-pip
The "pause" and "paho-mqtt" libraries must be installed using the Python PIP package

management tool with the command:

sudo -H pip3 install paho-mqtt pause
Both of these commands assume the system has internet access to download packages.

10.4.2 Installing on other Linux Systems

The replay tool is a Python script, written for Python 3. The only direct dependencies

outside of the Python standard library are:

• pause https://pypi.python.org/pypi/pause/ which is used to control the timing of

output.

• paho-mqtt https://pypi.python.org/pypi/paho-mqtt used to connect to the MQTT

broker.

The names of these packages vary between Linux distributions, or both can be installed

using Python's own PIP package management tool. Note that care must be taken to install

the Python 3 (as opposed to Python 2) packages!

https://pypi.python.org/pypi/pause/
https://pypi.python.org/pypi/paho-mqtt

 Page 27 of 28

Developing with the LV-CAP Virtual Machine

11 Appendix 1 Example Container Manager Configuration

This is an example Container Manager Configuration for running an Application with the

following information:

• Vendor: "eatl" (see Section 4.1 of the LV-CAP API document)

• Name: "skeleton" (see section 4.1 of the LV-CAP API document)

• Application version: 00.02.00-developement

From this we know that the Application's Instance ID will be eatl_skeleton_00 and its

Application ID will be eatl_skeleton. By substituting these into the structure given in Section

6 of this document, we get the configuration below:

To run this application, we will need three files:

• The above Container Manager configuration, in a file named 75e81145-e85f-42ff-

b992-d9d12c865c0e.json

• The Application image file, named eatl_skeleton_00.tar

• The Application configuration file, named eatl_skeleton_00.json

See Section 6 of this document for the procedure to start the Application.

To run multiple Applications, place similar elements in the "Containers" array for each

Application.

{
 "StatusUpdatePeriod": 60,
 "Containers": [
 {
 "containerName": "eatl_skeleton_00",
 "File": "eatl_skeleton_00.tar",
 "imageTimestamp": 1484838320,
 "DockerParams": {
 "containerName": "eatl_skeleton_00",
 "imageID": "eatl/skeleton:00.02.00-developement"
 }
 }
]
}

