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1. Context and purpose of this document 

The purpose of the Model Design document is to provide a detailed representation of the Spatially Enabled Asset 

Management (SEAM) model designs. This builds upon the information provided in D01 – The SEAM Specification 

Document and D02, the Model Definition Document produced at an early stage of the project as shown in Figure 1: 

SEAM Project Deliverables below. These documents captured the common errors that could be found within WPD’s 

data and sought to focus on those that were “harder to fix”, generating groups of use cases. From these groups of use 

cases it became apparent that two different types of model would be required to cover the range of potential data 

errors. Model 1 involves the creation of a traditional graph model and testing the ability of the network created to 

satisfy the load requirements.  Model 2 uses a spatial graph model to infer incorrect or missing customer attributes 

without requiring a full and correct connectivity model as a pre-requisite.  

 

This document  follows completion of the proof-of-concept (PoC) model and User Interface (UI) development activities 

and describes the models and interface as they were following the minor updates that occurred during the User 

Acceptance Testing phase.  

 

The design document covers the following topics: 

 Description and scope of the models 

 High-level model designs 

 Model logic and data flows (for each step the inputs, outputs, assumptions, processes, and techniques / 
calculations) 

 Code structure 

 User Interface design 

The design refers to the final PoC models and UI delivered as part of D04 AI Model and User Interface. 

 

 
Figure 1: SEAM Project Deliverables 
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2. Model 1 

2.1. Description of the model 

The purpose of the connectivity model is to use the connectivity of assets and customers to perform a simplistic 

transportation model to verify that the existing assets (and their attributes, i.e. capacity in terms of kW) is configured 

such than it can supply demand at peak times in the winter for customers connected to the circuit.  

 

Creating a graph for each unique circuit_id (As recorded in Electric Office), wires, cables, customers, substations are 

connected to the model, where line assets (wires and cables) are edges and point assets / customers are nodes. 

Demand is calculated at the customer nodes (either using estimated annual consumption and Elexon profile class or 

half-hourly meter readings if available) and a network flow problem is configured to determine an optimal strategy for 

routing power through the network.  A Max Flow algorithm is used as an alternative to running power flow analysis as 

this achieves similar results but without the complexity, longer processing times and licensing requirements 

associated with power flow analysis tools. Where the network is unable to supply the peak demand this could be the 

result of an error in the connectivity model resulting in the network appearing to extend further than it’s real bounds 

e.g. in the case of a missing open point.   Alternatively an asset with incorrect data about the asset type, size or 

material would result in an incorrect capacity value which could also result in an apparent overload if the capacity 

were underestimated.  Incorrect customer load data might also result in apparent overload and lastly there is the 

possibility that the network is correctly represented but genuinely overloaded, which is also worthy of investigation and 

follow up activity by network planners.  

 

The electrical connectivity of the linear assets in the circuits (cables and wires) and customers is not provided at LV 

circuit level, as it is at MV and HV level and steps are taken to approximate this connectivity: 

 Connectivity is implied in this modelling when nodes that are connected to 1 edge are at exact locations   

 For disconnected ‘isolated graphs’, when nodes that are connected to 1 edge are the most closely clustered 
compared to other nodes that are connected to 1 edge 

 Customers are connected to the closest node that are connected to 1 edge 

 Substation is located at the closest node to the centroid of the Electric Office geometry 

2.2. Scope of the model 

The intention of this model is to use the implied connectivity of assets and the assumption that customers are supplied 

real power from substations through the connected assets such that any discrepancies in the data (either connectivity, 

specification of assets, customer connectivity) can be identified through: 

 Power not being transported to the customer  

 Headroom (i.e. capacity less flow) on wires and cables is not sufficient according to design / operational safety 
factors 

As the data relating to the connectivity of the assets are not exact with explicit relationships between the assets, some 

additional tests and exception reports will be generated which highlight: 

 Nodes where connections / geometries should exist to fully connect isolated disconnected circuits 

 Nodes where customers and the closest nodes that are connected to 1 edge 

 Nodes where substation can be located on the graph of wire and cable edges 

Due to the merging of disparate datasets from different systems, exception reports where no matches are found in the 

matching process are also generated 

 For matching Customers with MPANs included in the P222 quarterly data exchange which provides EAC data 
to Electric Office circuit_id A tool to read and process the P222 csv files from each data aggregator to create a 
compiled database per licence area was developed as part of the Falcon project, so these datasources refer 
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to Falcon because of the use of that tool rather than reflecting the trial area of Milton Keynes and surrounding 
suburbs that was used for the Falcon project.  

 For matching Half Hourly customers to Electric Office circuit_id 

2.3. Model logic and data flow 

 

 
Figure 2: High level view of the processes required for running the model 

2.3.1. Data preparation 

The data preparation stage prepares the datasets and is comprised of a number of merges between data sets, filters, 

and also calculation of the capacity, with the first stage of capacity backfilling applied, i.e. estimating the capacity 

where there is not sufficient asset data to confirm the capacity. Datasets which have been processed are stored in 

pandas dataframes, serialised stored as pickle files in the directory ‘../temp‘ and de-serialised and processed.  

 

Function Description Techniques / calculations Data in  

ingest_merge_ 

customer_uprn 

merges three datasets 

to create a dataset 

which links locational 

data to customer 

identifier (MPAN, 

UPRN) to a substation 

and feeder 

CROWN customer MPAN dataset is left joined to 

UPRN database on ‘UPRN’ 

 

This is then left joined to CROWN customer 

dataset on ‘MPAN CORE’ 

UPRN database: 

osopenuprn_202101.c

sv 

UPRN to geospatial 

reference (i.e. X-

coordinate, Y-

coordinate) 

CROWN customer 

dataset: 

Q_SEAMconnectivityd

ata.xlsx 

CROWN customer 

MPAN dataset: 

Q_SEAMMPANsrequi

ringmatching 

UPRNdata_21012021.

xlsx 

query_access_ 

demand 

finds the unique set of 

MPANs in the CROWN 

customer data set and 

searches the SQLite 

database for matching 

MPANs to return rows 

which match  

Create a connection to the SQLite databases in 

the data directory and returns dataframe of 

matching MPAN rows 

Falcon estimated 

annual 

consumption:  

FalconEac - SWEB 

Nov 2020.SQLite 

Half hourly customer 

consumption: 

HH SWEB 2017 

Q4.SQLite 

HH SWEB 2018 

Q1.SQLite 

HH SWEB 2018 

Q2.SQLite  

HH SWEB 2018 

Q3.SQLite 
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merge_custom

er_demand_hh 

merge_custom

er_demand_ea

c 

Merges datasets to 

create a dataset which 

links customer to 

demand profile (half 

hourly) or estimated 

annual consumption    

customer-mpan-uprn-gdf is inner joined to 

combined EAC tables on MPAN CORE 

 

customer-mpan-uprn-gdf is inner joined to 

combined Half hourly tables on MPAN CORE 

 

process_eo Filters electric office 

datasets by substation 

based on assets which 

are within the bounding 

area specified as an 

input 

Reads in all layers in the fname specified, clips 

each table by a polygon made by user define 

xmin, xmax, ymin, ymax. The unique set of 

substations within the tables cable, wire, 

substation_pm and substation_gm are then used 

to filter these tables in order to preserve complete 

circuits where possible, i.e. if a circuit is partially 

over the box region 

Electric Office GIS 

dataset:  

SEAM 2021-02-

26.sqlite 

process_directi

ves 

Process digitised csv 

files version of WPD 

policy documents which 

contain the current 

ratings for wires and 

cables of specified 

cross-sectional area, 

material / type and 

number of cores / wires.  

Concatenate all directive files relating to wire and 

cable; group by on number of cores, size, material 

and phase and calculate max / min for each 

category. This is required as there are some 

duplicated values (due to other factors recorded in 

the policy document but not reflected in the data, 

such as types of casing on the cable, e.g. XLPE, 

oil impregnated paper etc.) 

Tabulated WPD 

Directives: 

cable ratings - 

SD8B_4_part1.csv 

cable ratings - 

SD8B_4_part2.csv 

cable ratings - 

SD8B_3_part3.csv 

extract_from_wire_rati

ngs_SD8A_3.csv 

find_eo_spec_

elements 

Size, material and 

number of cores data is 

embedded within the 

‘specification_descriptio

n’ column within cables 

and 

‘specification_descriptio

n_1’ within wires and 

the individual elements 

are extracted in this 

stage 

Material is extracted by finding a unique set of 

materials in the directive files and finding longest 

matching string within the column 

 

Size and wires / conductor is extracted by using 

regex match pattern 

 

If size is less than 1, it is assumed that this is a 

in^2 metric and converted to mm^2 by multiplying 

by 645.16 

 

directive_confo

rmity_size_mat

erial 

 

Checks for material and 

size extracted from the 

specification_descriptio

n column against the 

directive files.  

Checks for material and size conformity in 

directives. Adjustments are made if the size is 

within 0.05 of size which exists in the directive. 

This is output to the column ‘size_adjusted’    

 

directive_confo

rmity_size_mat

erial_wire_nu

m 

Checks for material, 

size and number of 

cores extracted from 

the 

specification_descriptio

n column against the 

directive files. 

Checks for material, size and number of cores 

conformity in directives. If material, size are 

conforming but number of cores is not and 

adjustment is made to output column ‘w_adjusted’ 

/ ‘c_adjusted’ to the number in directives with least 

absolute difference.    

 

Merge_directiv

e 

Merge ‘normalised’ 

specification_directive 

with directives 

  

find_cable_wir

e_capacity 

Calculate wire / cable 

capacity for each asset 

in Electric Office 

Calculate maximum power capacity in kW using 

the nominal voltage and rated current found in 

directives and matched using the 

specification_description column 

Capacity = (nominal_voltage_pp* amps) / 1000 
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merge_cust_e

ac_eo 

 

merge_cust_h

h_eo 

Merge customer data 

with electric office data 

Synthetic circuit id is created from CROWN 

columns ‘DIST SUBSTATION’ and ‘LV FEEDER’ 

as customers are not assigned circuit_ids 

Substation and LV feeder is extracted from 

circuit_id by first finding a full LV feeder code, or if 

this is not found the last two digits are used to 

match against the LV feeder set. 

 

The two datasets are then joined on the synthetic 

circuit id  

 

backfill_missin

g_capacity 

Backfill missing 

capacity for wires and 

cables according to 

network_type, usage, 

bool_wpd_running_3_p

hase and type: at 

circuit_id level if 

existent or at area level 

if not.  

Merge the Electric Office wire / cable datasets 

with: 

 

Circuit_id level aggregation: Aggregate electric 

office wire / cable datasets using network_type, 

network_type, usage, 

bool_wpd_running_3_phase, type, circuit_id and 

aggregate using a function of the user’s choice 

(min, max, mean)  

 

Area level aggregation: 

Aggregate electric office wire / cable datasets 

using network_type, network_type, usage, 

bool_wpd_running_3_phase, type and aggregate 

using a function of the user’s choice (min, max, 

mean)  

 

Merge columns, taking circuit_id level aggregation 

where possible to produce columns 

‘capacity_backfill’ and ‘capacity_backfill_type’ 

 

NB: ‘unmetered service‘ line asset types are 

treated as ‘service’ and backfilled accordingly 

 

Table 1: Data preparation (model 1) 

2.3.1. Circuit configuration 

In this section, the circuits are configured from the GIS data, with connections added to connect some 

microdisconnects which appear in this data. The Electric Office data is processed using the python library NetworkX, 

for studying graphs and networks. Once configured, the individual graph objects are serialised and stored in 

directories for further analysis.  

 

Function Description Techniques / calculations 

Build_circuits This is the main function which 

loops through individual 

circuit_id circuits and drives 

the procedures for creating 

circuit graphs 

For each circuit with circuit_id: 

 

Linestrings which include curvature are planarized to preserve 

where curvature is important for connectivity 

 

Planarized linestrings are then made into a network graph object, 

where lines are planarized cables and nodes are connections 

between these lines 

 

The nodes with degree two (where all attributes, apart from the 

geometry, are the same) are removed and replaced with a line 

connecting to its other node. (this is to clean the graph to 
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preserve only where edge attributes change and / or there are 

junctions connecting many lines) 

 

If the number of isolated graphs is greater than one, Kmean 

clustering is used to cluster nodes with degree 1 into (number of 

nodes with degree 1 - number of isolated connected graphs + 1) 

clusters. This method assumes that any disconnected nodes are 

closer than other nodes which should remain disconnected. This 

method does not connect disconnects where the disconnect 

occurs at vertex to line, line to line, or where the disconnect is 

caused by exceptions where the distance between disconnected 

nodes is greater than the next set of disconnected nodes which 

are actually disconnected.  

 

If this connection method creates a single output connected 

graph, the set of nodes with degree 1 and the centre of the 

cluster is saved. The new edges are then from the cluster centre 

to each of the nodes with degree 1. This ensures that there is no 

ambiguity as to which nodes are connected for connections 

between 2+ nodes.  

 

New edges are labelled with {"gen_type": "sim_disconnects"} 

Separate graphs are saved for each circuit_id in the 

\temp\circuit_graph directory 
Table 2: Circuit configuration (model 1) 

2.3.2. Connecting customers 

In this section, the graphs configured in the previous section are used to connect customers by adding edges from the 

customer to the nearest node with degree 1 in the graph. Within this section, the settlement date and period are found 

for the peak demand for each circuit to calculate the demand per customer at this time.  

 

Function Description Techniques / calculations 

find_peak_settleme

nt_period 

This function aggregates 

energy demand from half-

hourly and estimated annual 

consumption customers by 

circuit_id and finds the max 

half-hour time period. 

 

The individual customer peak 

is then calculated per 

customer using the peak date 

and settlement period.  

Standardise date format columns from P222 file provided EAC 

data as processed by the Falcon tool and half hourly datasets 

and filter “Settlement Date” column to 2019 winter months.  

 

Find peak demand per circuit_id  

 

Merge estimated annual consumption dataset with Elexon 

coefficient dataset1 using a left join on the fields “ProfileClassId” 

and “Profile Class ID”. Multiplying the estimated annual 

consumption figure by the Elexon coefficients (from data file 

Default_Period_Profile_Class_Coefficient_308.csv) accounts for 

the mean demand element. If only the mean demand element 

(i.e. Elexon coefficient for the settlement period multiplied by the 

estimated annual consumption number) is accounted for then 

there is 50% chance that the demand would exceed this value in 

a given situation. This reflects the fact that the original use for 

Elexon profiles is to calculate values for settlement.  These 

calculations typically take place at Grid Supply Points where 

there are many thousands of customers included and the profiles 

reflect the full impact of diversification between customers.   The 

                                                      
1 https://www.elexon.co.uk/operations-settlement/profiling/ 
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formulation within this model which acts to correct for the lower 

level of diversity between customers for a single LV feeder is: 

 

Design demand = Mean demand + 1.28 x standard deviation 

 

This design demand corresponds to a 90% probability of meeting 

the demand within the design voltage regulation – an acceptable 

level of risk (ACE 105). The standard deviation element is 

integrated in this model as an input variable as a percentage of 

the mean demand. i.e. if the user chooses 0.1 this is 10% of the 

mean demand and this is used as the standard deviation. This 

demand is given in kWh for the half hour; the corresponding 

power in kW is calculated by Design demand / 0.5 i.e. Design 

demand * 2.  Thus if the customer demand in a half hour period 

is 2kWh then this is the equivalent of an average power of 4kW 

being drawn for the half hour period.  

 

The half hourly dataset and estimated annual are combined and 

a group by is applied on the columns “Settlement Date” and 

“Settlement Period ID” with a sum  aggregation on the 

“hour_hour_demand” column for each circuit_id. The output 

dataframe is then: circuit_id, circuit_peak_Settlement Date, 

circuit_peak_Settlement Period ID, 

circuit_peak_half_hour_demand. 

 

Find peak demand per customer given the peak settlement date 

and id  

This output is then joined back onto the customer consumption 

and the peak demand per customer is calculated and saved.  

Connect_customer

s 

This function connects 

customers to their 

corresponding circuit_id graph 

network 

A k-d tree (space-partitioning data structure for organizing points 

in a k-dimensional space) of all nodes in the circuit graph with 

degree = 1 (i.e. nodes with only one edge connected to) is used 

as the search space against customer’s x and y coordinates for 

the nearest node.  

 

The new edge is then added with the label {"gen_type": 

"sim_cust_circuit"} and the new graph is saved.  

Table 3: Connecting customers (model 1) 

2.3.3. Locate substation 

In this section, the substation is located on the graph, given a threshold (default set to 10m). 

 

Function Description Techniques / calculations 

locate_sub This function connects locates 

the node closest to the 

substation in the circuit, where 

the distance is below a 

threshold (set to 10m)  

 For each circuit_id, all substations queried against a k-d tree of 

all nodes in the circuit. If the distance is less than threshold 

(10m), the substation is added to the circuit via attributes in the 

node.  
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Table 4: Locate substation (model 1) 

2.3.4. Run max flow 

Within this section, a simple graph-structure based backfilling of capacity is applied for specifically synthesized edges 

which connect the customers to the network as well as edges which connect disconnects. Pre-processing, which is 

required to simplify the circulation with demand problem to a maximum flow problem, of the graphs is also conducted 

at this stage. The maximum flow analysis is then conducted and parsing / post-processing of results is also carried out 

within this script.  

 

Function Description Techniques / calculations 

run_max_flow_circ

uits 

This function runs the 

procedures which:  

- backfills capacity in any 

generated edges (i.e. gentype 

= sim_cust_circuit and 

gentype = sim_disconnects),  

- allocates supply amount from 

the substation location, 

- adds theoretical edges to the 

circuit graphs (in order to run 

maximum flow on a circulation 

with demands problem), 

- runs max flow and parses the 

output.    

 Capacity backfilling for generated edges is done on a 

neighbourhood aggregation basis as these edges are added as 

extensions / connections of existing cables. The user input max, 

mean or min sets how the aggregation is applied.   

 

Power supply, which is -ve of the total demand in the circuit is 

allocated at substation. Where there are more than one 

substation per circuit, the supply is split evenly across all 

substations.  

 

In order to reduce the circulation with demands problem (i.e. 

finding feasible flow that satisfies capacity constraints and 

demand constraints) to a maximum flow problem, which has 

very efficient and fast algorithms, additional source and sink 

nodes, with edges of capacity equal to demand / supply 

connecting to the substation(s) and customers, respectively.2 

See below for a diagram.  

 

The networkX’s implementation of the maximum flow algorithm 

is used to solve the maximum flow problem. The results are then 

parsed and saved as a new directed graph; i.e. there is a 

feasible output flow attribute for each edge. Post processing is 

then applied to remove theoretical edges and convert the 

theoretical node edge attributes back to node attributes. 

 

make_report Converts the maximum flow 

output graph to tabular format 

and compile post analysis 

headroom reports.  

The graphs as output from run_max_flow_circuits are then 

converted back into a GeoDataframe and the headroom is 

calculated on each cable / wire as well as the relevant nodes 

(i.e. customers and substation) where for edges: 

 

Head_room = capacity – flow 

 

Head_room_pc = (capacity – flow) / capacity 

 

For nodes: 

 

Demand_not_met = capacity – flow 

 

For the output max_flow_reporting report, the GeoDataframe is 

queried to provide: 

 

                                                      
2 https://www.cs.umd.edu/class/fall2017/cmsc451-0101/Lects/lect17-flow-circ.pdf  

https://www.cs.umd.edu/class/fall2017/cmsc451-0101/Lects/lect17-flow-circ.pdf
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n_headroom_abs – number of wires / cables with headroom less 

than threshold as input by the user 

n_headroom_pc – number of wires / cables with percentage 

headroom less than percentage threshold as input by the user 

n_cust – number of customers with demand not met > 0.1 

Table 5: Run max flow (model 1) 

 

 

Figure 3: Reducing the circulation problem to network flow [1]  

 

 

 

 
2.4. Code structure 

The overall model is executed from main.py which runs a number of modules in sequence: 

 file_check.py 

 data_prep.py 

 circuit_config.py 

 customer_connectivity.py 

 locate_substation.py 

 run_max_flow.py 

Below diagrams show the functions and modules and the procedure in which they are executed.  
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Figure 4: Left: Procedure in which functions and their respective modules which are initiated when running: the data preparation stage: 

wpd_seam.data_prep.main() 
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Figure 5: Procedure in which functions and their respective modules which are initiated when running: the run_max_flow stage: 
wpd_seam.run_max_flow.main() 
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3. Model 2 

3.1. Description of the model 

The main purpose of the spatial graph model (model 2) is to identify incorrect and missing attributes in the GIS data 

and to suggest correct values through the application of machine learning, which corresponds to use case group 2 

from the project specification document3. This is achieved by exploiting the spatial relationships between the assets in 

addition to their intrinsic attributes, using a graph data structure and a graph neural network (GNN) based machine 

learning model. This allows it to learn spatial patterns of attributes in the electrical network and hence to identify 

attributes that are inconsistent and suggest correct values. 

 

The model also provides a structure that can be extended with data from external sources such as CROWN, that can 

be used to detect inconsistencies across systems and suggest resolutions through the application of machine 

learning, which corresponds to use case group 3 from the project specification document2. 

 

For each prediction, the model also produces confidence scores that can be used to filter or rank the predictions. 

These are obtained from the raw outputs of the neural network. There are three trained sets of thresholds that the 

user can choose between to determine the required level of confidence required for a suggestion to be included in the 

detailed exceptions report. There is also an option to disable these thresholds and include all suggestions in the 

report. 

 

The model is inductive, which means that a trained model can be applied to unseen data without retraining. Hence, 

the model can be trained on a subset of the network and then used to create predictions for other parts of the network. 

Furthermore, the prediction process is fast. 

 

As an inductive, machine-learning-based model, there are three separate, but related, processes involved; each with 

its own purpose and outputs. These are as follows. 

 Training: This process is used to obtain a new trained model that can be used to generate predictions. The 
model is trained against the data for a selected region taking the original data as ground truth and adding 
synthetic errors to form the input data. The GNN model is iteratively optimized to increase the number of 
output values from the model that match the true (original) values given the corrupted input data. 

 Evaluation: This process is used to measure the ability of a pre-trained model to make correct predictions, 

given data with synthetic errors. As for the training process, it uses the original data for the selected region as 
ground truth and add synthetic errors to form the input data. It can either be applied in a transductive (i.e. 
same region as training, but different synthetic errors) or inductive (i.e. different region from training) manner. 

 Prediction: This process is used to identify errors in the original data and obtain suggested corrections. It 

uses the pre-trained model to generate predictions using the original data for a selected region as the input 
data. This process outputs the list of suggested corrections that meet the necessary scoring thresholds. It can 
either be applied in a transductive (i.e. same region as training) or inductive (i.e. different region from training) 
manner. 

The only differences between these processes are: 

 Whether the model is loaded from a file (evaluation and prediction) or trained and saved (training) 

 Whether synthetic errors are included in the input data (training and evaluation) or not (prediction) 

 Whether the model evaluation output reports can be created (training and evaluation) or not (prediction) 

3.2. Scope of the model 

 

As a proof-of-concept, the scope of the model is to predict the correct values for following attributes for each asset 

using the original values plus the geometry of the point and line assets. These data are all obtained directly from the 

EO dataset. 

                                                      
3 Insert reference to D01 Project Specification document 
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 network_type: Network type attribute 

 nominal_voltage_pp: Operational voltage attribute 

 spec_material: Material part of the specification description attribute 

 spec_size: Size part of the specification description attribute 

No external data is used except for: 

 List of possible material values previously extracted from the WPD company directives. 

There is one model that takes all of these as inputs and outputs predictions for all of them in parallel. 

 

Specifically, the model only uses the following attributes from each layer in EO. 

 cabinet: 'id', 'geometry' 

 cable: 'id', 'geometry', 'network_type', 'nominal_voltage_pp', 'specification_description' 

 conduit: none 

 connector_point: 'id', 'geometry', 'network_type', 'nominal_voltage_pp' 

 connector_segment: 'id', 'geometry', 'network_type', 'nominal_voltage_pp' 

 energy_consumer: 'id', 'geometry', 'network_type', 'nominal_voltage_pp' 

 energy_source: 'id', 'geometry', 'network_type', 'nominal_voltage_pp' 

 isolating_eqpt: 'id', 'geometry', 'network_type', 'nominal_voltage_pp' 

 keypole: 'id', 'geometry', 'network_type', 'nominal_voltage_pp' 

 pole: 'id', 'geometry', 'network_type', 'nominal_voltage_pp' 

 power_transformer: 'id', 'geometry' 

 protective_eqpt: 'id', 'geometry', 'network_type', 'nominal_voltage_pp' 

 service_connection: 'id', 'geometry' 

 service_point: 'id', 'geometry', 'network_type', 'nominal_voltage_pp' 

 substation_gm: none 

 substation_pm: 'id', 'geometry' 

 tower: 'id', 'geometry', 'network_type', 'nominal_voltage_pp' 

 wire: 'id', 'geometry', 'network_type', 'nominal_voltage_pp', 'specification_description_1' 

3.3. High-level design 

Objectives 
As discussed above, the main objective for model 2 (spatial graph model) is to identify and correct missing and 

erroneous attributes values in the GIS data. 

 

In particular, the model must be able to support the following objectives, even if they are not necessarily implemented 

for the PoC: 

 Multiple asset types, including: 
o point, line and polygon geometries 
o electrical assets (e.g. wire, isolating equipment) 
o support assets (e.g. pole, substation) 

 Include spatial relationships between assets 

 Include electrical relationships between assets (where available) 

 Include other relationships between assets (e.g. physical) 

 Allow for missing assets, attributes and relationships 

 External data (e.g. buildings with attributes) 

 Incremental addition of input attributes, feature types and relationship types 

 Able to predict for unseen data, but not necessarily optimized for it 

Background 
WPD’s GIS data were migrated from the previous CAD-based system, which contained data that were accumulated 

over many years from multiple predecessor organisations according to different standards and procedures that were 
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applicable at the time, and is being updated and improved by the GIS team. Due to their origin, the GIS data have the 

following characteristics: 

 Lots of missing assets.(most commonly service cables)  

 Attributes derived from symbology used in CAD system and manual data entry. Hence, geometries are 
complete in 2D for all assets present in the data, but otherwise, there are lots of missing or incorrect 
attributes. 

 Geometries of assets that are directly electrically connected may not meet exactly. For example, there may be 
gaps or overlaps. 

 Geometries of assets that are not directly electrically connected may overlap or come very close together. For 
example: 

o HV wire passing over an underground LV connector point should not be part of the same circuit. 
o 2 cables and a connector point (CP) should be part of the same circuit but connected as cable to CP 

and CP to cable with no direct connection between the cables. 

 Electrical relationships limited to circuit membership. Circuit membership is currently being inferred by GIS 
team using an algorithmic approach based on the geometries, and this activity is ongoing. 

 

Selected Approach 
There are two key components to this model: the spatial graph structure and the graph neural network. The spatial 

graph structure is a model for organising the GIS data into a graph structure based on the spatial relationships 

between the assets, and the graph neural network is the machine learning model that is used to predict the true 

properties of assets in the graph. In this PoC, the GNN is limited to predicting the true attribute values for selected 

attributes of the EO assets (i.e. node classification). 

 

This is different from approaches that have been taken before, because: 

 it does not require information about electrical connections, 

 it supports all kinds of assets, attributes and relationships, 

 it supports external geospatial data, and 

 it can be constructed using only a subset of the assets, attributes and features. 

Spatial graph structure 

 

The spatial graph model contains a layer of point location nodes, with distance edges between them to create a 

spatial mesh, and edges between each asset or features and the location nodes that are part of it. 

 

The model comprises: 

 one node for each asset/feature 

 one node for every unique point location (subject to some tolerance) 

 edges from each assets/features to every location that is associated with it: 
o points: one location from Point geometry 
o lines: two or more locations that make up the LineString geometry 

 reverse edges for locations to assets 

 edges between “nearby” locations with “distance” attribute to create a complete mesh 

 self-loop edges for all node types 
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Figure 6: Spatial graph structure for SEAM PoC 

This structure could be extended by adding, for example: 

 edges from polygon assets to all locations that are within them 

 edges between assets to denote logical relationship, such as: 
o pole-mounted assets to associated pole(s) and/or towers 
o substation to associated winding, isolating and protection equipment 

 one node per circuit ID plus edges to all the assets that are part of that circuit 

 edges between assets to denote direct electrical connection 

 node(s) for each external feature, such as UPRN or annotation, with edge(s) to associated location 
node(s) 

Note that this graph model is still fairly complex, even the minimal version, because it is a heterogenous graph (i.e. 

different node types and different edge types) with different node feature vectors for each node type, some edges with 

feature vectors, and both directed and undirected edges. 

 

The main advantages of this model are as follows. 

 Can be constructed using only the assets, attributes and relationships of interest. 

 All assets are connected to all other assets via the location layer. 

 Separate, complementary concepts of sharing location and electrical connection. 

 Information about electrical connection is not mandatory, but can be included, even if it is incomplete. 

 Allows other location-based data, such as UPRN and property classification, to be added. 

 No edges with zero distance (or very short). 

 The problem of selecting distance edges to add is reduced to creating a mesh on a point set in 2-D 
Euclidean space. 

 Spatial relationships with linear assets take into account every point that is part of its LineString geometry, 
not just the ends or middle. 

 Distances through the spatial mesh are only approximate (i.e. not exactly the same as the Euclidean 
distance between arbitrary locations), which will reduce the risk of the model overfitting on proximity. 

The main disadvantages of this model are as follows. 

 Curved geometries will result in lots of point locations. 

 Extent of polygon geometries are not stored: only the locations of other assets that are within them. 

 Order of the locations along LineString geometries is not stored. 

 Exact distances along the circuits may not be available, depending on which distance edges and length 
attributes are included. 

While a model can only predict based on patterns that are included in the training data, this graph model can support 

tasks such as the following: 

 Node classification: 
o network type for all assets using geometry and network type attributes only 
o cable/wire specification from cable/wire assets, locations and attributes only 
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o connector point joint type from cable/wire assets 

 Link prediction: 
o circuit membership even when they are missing conductor assets 
o electrical connections between assets that are not exactly co-located 
o location(s) associated with an added cable given one location, circuit ID and other selected 

attributes 

Note that only locations that are already in the spatial mesh can be used for location link prediction. 

 

Graph neural network 

 

The graph neural network is the machine learning component that uses the graph data structure, described above, 

and the observed attribute values to predict correct values for each of the attributes of interest for each of the assets 

of interest. The main factors that lead to the selection of a graph neural network for this model are as follows. See the 

section on “rejected approaches” for more details. 

 Relationships and feature vectors are equally important 

 Should be able to predict for unseen data 

 Need to scale to arbitrarily large areas in the future 

 Derived embeddings are optimised for the target output attributes 

The full spatial graph model is a heterogenous graph (or heterograph), which requires the use of relational graph 

convolutional (R-GCN) layers (arXiv:1703.06103), and types of layers derived from them, in the neural network model.  

Furthermore, each asset attribute to be predicted by the neural network requires a separate "head", resulting in a 

multi-headed architecture. 

 

For the purposes of the PoC, all the node attributes to be predicted/corrected are categorical ones or are converted to 

categorical ones by binning the values. This has two main advantages for the PoC: 

 The implementation is far simpler using only classification heads, rather than a mixture of classification 
and regression heads. 

 The creation of “confidence scores” is easier for classification outputs than for regression ones. 

The architecture of the neural network model for the PoC is shown in Figure 7. 

 

https://arxiv.org/abs/1703.06103


19 | westernpower.co.uk/innovation 
  

 
Figure 7: Architecture of the graph neural network model for SEAM PoC 

 

The input vector to the neural network is the concatenation of the encoding of all the input attributes for each asset. 

Categorical attributes are encoded via a one-hot encoding, numerical attributes are encoded via a fixed scaling with a 

column added that is 1 when the value is not missing, and missing attributes encoded as all zeros. These inputs are 

used as the feature vectors for the asset nodes. The location nodes have all zeros as the feature vectors. For the 

location-location edges, the edge weight is set to be the inverse of the distance between the locations up to a 

configurable maximum value. All other edge types have no edge weights (equivalent to all fixed value). 

 

The backbone of the neural network is comprised of used 4 weighted R-GCN layers (shown in Figure 8) with sum 

aggregation and ReLU activation and without regularization4. The output of the backbone is an embedding for each 

node. The node embedding for each asset node of interest is then passed to the corresponding output heads for the 

corresponding attributes of interest. There is one output head for each output attribute and each output head is 

comprised of 2 dense layers with ReLU activation (except for the final layer). Dropout layers are present in the 

implementation but were not enabled in the current model training. The output of each head is a raw, unnormalized 

score per class for the corresponding attribute. 

 

During training and evaluation, a cross-entropy loss is applied to each output head, with weights per class that are 

inversely proportional to the frequency of that class in the training set, in order to mitigate class imbalance problems, 

and then summed across the outputs to obtain a single combined loss. The loss is only evaluated for nodes where the 

original value is applicable and not missing. The neural network was optimized over 200 epochs using the Adam 

algorithm with a learning rate of 0.01 and a weight decay of 0.0005. 

 

                                                      
4 Regularization (e.g. basis- and block-diagonal-decomposition) is not currently required, since the number of distinct 
edge types is small and, hence, the number of parameters in each heterogenous convolution is manageable. 

https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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Figure 8: Diagram for computing the update of a single graph node/entity (red) in the R-GCN model from neighbouring nodes (dark blue) 
(from arXiv:1703.06103) 

 

The graph neural network model is implemented using DGL 0.6.1 and PyTorch 1.8.1. 

 

Model outputs and Confidence scores 

 

As discussed above, the output of each head is a raw, unnormalized score per class for the corresponding attribute. 

From these are extracted the predicted (i.e. output) value and confidence scores. 

 

For the PoC, exactly one output value is identified for each output attribute of interest. These are given by the index of 

the highest value in the scores vector for each attribute for each asset. This works well for the categorical outputs 

used for the PoC, since there are relatively few output classes for each attribute. A future version of SEAM could 

output multiple plausible values for investigation by the data steward. 

 

Associated with this prediction, two confidence scores are extracted for each attribute for each asset: the “absolute 

score” is the highest value from the scores vector, and the “relative score” is the difference between the highest value 

and the second highest value. Each of these scores should be higher for predictions that the model is more confident 

in. 

 

The purpose of the confidence scores is to allow the user to filter-out the low-confidence exceptions that are identified 

and investigate the high-confidence ones. In principle, this could be achieved using some combination of these two 

scores. However, for the PoC, it was found that the simplest approach was to use just the relative score, i.e. how 

much more confident the model was in the top output than the second top one.  

 

In order to achieve the desired filtering, a score threshold must be specified. Since the scores are dependent on the 

trained model, the thresholds must be selected as part of the model tuning and they must be different for each output 

attribute. The model training selects 3 named sets of thresholds: “low”, “medium” and “high”, which the end user can 

choose between in the Excel UI5. These thresholds are tuned as follows: 

1. The model is evaluated on the training fold of the training dataset 

                                                      
5 The user can also select “none” to disable the thresholds. 

https://arxiv.org/abs/1703.06103
https://www.dgl.ai/
https://pytorch.org/
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2. For each attribute, the scores for assets where a change is detected (i.e. output is different from the input) 
are selected 

3. For each attribute, the threshold is set at a fixed quantile of those scores 

The quantiles used for the tuning are configurable via the model parameters file (See Appendix 2: Model 2 parameters 

file), and the default values are “low” = 0.2, “medium” = 0.5, “high” = 0.8. This means that, for example, after training, 

20% of the changes identified in the training dataset had scores that were below the “low” threshold. Since the training 

dataset contains synthetic errors in the inputs, these quantiles refer to the synthetic errors, rather than the real ones. 

 

Note that this threshold logic does not change the underlying model outputs: it just controls which changes appear in 

the detailed exceptions report and the reporting columns that relate directly to that. 

 

Priority list of target attributes 

 

The plan was to develop the model incrementally, as time allows; these stages are shown below, in priority order. 

Note that it is also a priority to explore multiple kinds of output attributes within the scope of the PoC. The current 

model only predicts the attributes in bold. 

 

These stages are: 

1. Voltage (node classification) 

These attributes are relatively straightforward to model, expect to find spatial patterns and common to many 

asset types, while still meaningful when taking a subset of asset types. 

 Operational voltage 

 Network type 

 Usage 

 Running 3 phase 

 Design voltage 

It is expected that this will not identify many (if any) real errors in the sample dataset. However, it will 

demonstrate the ability of the graph model to extract relevant patterns to identify and correct synthetic errors. 

This can easily be measured, since it can be assumed, with a high degree of confidence, that the original data 

match the ground truth. 

2. Specification (node classification) 

These attributes are harder to model and include attributes that are known to have lots of missing data in the 

sample dataset, but are mostly only relevant to conductors. 

 Specification description (parts) 
o Number of wires 
o Number of cores 
o Size 
o Material 

 Number of wires 

 Armouring 

 Fluid-filled 

 PVC insulation 

 Capable 3 phase 

Since there are lots of missing values in these attributes in the original data, these model outputs are more 

interesting to the end users than the voltage-related ones. However, since, the information available about the 

underlying ground truth is less reliable, it is hard to accurately assess the model performance and the 

predictions will also be less reliable. 
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3. Circuits (link prediction) 

This attribute is important for building the electrical connectivity of the network and is known to have lots of 

missing values in the sample dataset. 

 Circuit identifier 

Using this model, it should be possible to link assets to circuits even in the presence of missing assets, by 

exploiting spatial patterns and other attributes. This would provide a complementary, data-driven approach to 

the current rules-based approach being developed by the mapping team. 

 

Rejected Approaches 
Initially, it was planned to use standard table-based imputation techniques, such as Multivariate Imputation by 

Chained Equations6. Some other promising approaches for data cleaning that use similar techniques to each other 

are Denoising Autoencoders and image restoration/inpainting. While many of these techniques are designed to fill 

missing data only, it was anticipated that these could be adapted to also detect and correct input values that are likely 

to be erroneous too. 

 

However, the nature of the missing GIS data is such that these cannot be done for each asset independently without 

some representation of the local neighbourhood of that asset, and the local neighbourhoods of each asset in this 

situation are highly complex: they comprise many kinds of assets in different configurations on various spatial scales. 

Engineering spatial features to capture this would be complicated, expensive and inefficient. Instead, it is better to use 

graph-based techniques which are intended for precisely this purpose. 

 

Traditional graph models for power networks are focussed on power systems analysis and network management, 

rather than on asset management. Hence, they tend to have the following characteristics: 

 Focus on electrical properties 

 Require complete electrical connectivity 

 Simplify linear assets to abstract connections 

 Ignore spatial relationships 

Furthermore, it is difficult to just add spatial relationships to these graph models since it’s hard to define a satisfactory 

distance relationship between the assets. For example, using the minimum distances between assets is useful for 

identifying assets that may be connected together, but it does not satisfy many of the requirements for a mathematical 

distance function, such as the triangle inequality: if cable A and B have a distance of 0 between them and cables B 

and C have a distance of 0 between them, then the distance between cables A and C is not necessarily 0. 

Alternatively, using the distance between the mid-points of the geometries makes it hard to identify which assets might 

be connected together; this option is also not robust to often arbitrary choices about where to end one conductor asset 

and start the next in the GIS. 

 

The lack of a normal mathematical distance function means that it is also hard to decide which distance edges to 

include in the graph. Also, there will be lots of edges with zero or very short distances. 

 

From all of this, it is clear that a new graph model is required that is focussed on predicting asset attributes and 

relationships and emphasises the spatial relationship between assets. This is the model described above. 

 

In terms of machine learning on the graphs, there are two main kinds of approach: those that use direct encoding 

algorithms and graph neural networks. Direct encoding methods, such as node2vec and DeepWalk, are unsupervised 

techniques that calculate an embedding vector for each node that can then be used as the input to a decoder model 

that is specialised for the task at hand. This direct encoding technique has two significant drawbacks: 

                                                      
6 Stef van Buuren, Karin Groothuis-Oudshoorn (2011). “mice: Multivariate Imputation by Chained Equations in R”. 
Journal of Statistical Software 45: 1-67. 
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 It is a transductive technique, which means that when new data are added or a new graph is to be analysed, 
then new brand-new embeddings must be created and the decoder model must be retrained. This does not 
match our objectives. 

 It is an unsupervised technique, which means that the embedding must capture all the information about the 
neighbourhood in the hope that it will be relevant to the decoder model. Our problem is complex, in that the 
node feature vectors are rich, and semi-supervised, in that we have some information about the target that 
can be exploited to create an efficient embedding. 

In contrast, graph neural networks (GNNs) can avoid both these drawbacks. Hence, GNNs are selected for the ML 

component. 

 

3.4. Model logic and data flow 

Figure 9 shows the top-level model logic and data flow for the spatial graph model. It is takes various input parameters 

and files and creates various output files, as shown in the diagram. 
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Figure 9: Top-level model logic and data flow for spatial graph model (model 2) 

The steps are as follows, with more details provided later. 
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1. Initialisation. Process input arguments, load parameter file and model file (if applicable) and prepare internal 
state of the model application. 

2. Load data. Read EO asset data from file and prepare for modelling. 
3. Prepare graph data. Extract and convert node and edge data from EO data. Generate synthetic errors (if 

applicable). 
4. Make graph. Construct graph data structure and organise data for training and evaluation. 
5. Train model. (If applicable) Train neural network model and score thresholds, and save to file. 
6. Evaluate model. Calculate predictions for all assets in dataset and check score thresholds. 
7. Create reports. Create detailed and summary output reports as CSV and GeoPackage (as appropriate). 

When the model is run from the Excel UI or the CLI, then the console outputs are stored in an “outputs.txt” file in the 

reports directory, which can be read to monitor progress. 

 

Initialisation 
The initialisation processes the input arguments, loads the model parameter file and model file (if applicable) and 

prepares internal state of the model application. It also saves the input arguments as a JSON file. 

 

Inputs 

 Input arguments from Excel UI 

 Model parameter file (optional for evaluation and prediction) 

 Model file (except for training) 

Outputs 

 Initialised model application 

 Model parameters structure 

 Trained model, including sets of thresholds (evaluation and prediction) 

 Application settings JSON file 

Assumptions 

 N/A 

Processes 

1. Convert and validate input parameters. Use default values for parameters that are not specified. 
2. Read the model parameters file (if specified). 
3. Read the model file (evaluation and prediction). 
4. Create the feature generator objects from model parameters file (training only) or the model file (evaluation 

and prediction). 
5. Initialise various internal data structures used in the spatial model processes from the data mentioned above. 
6. Save the input parameters to JSON for traceability and reproducibility. 

Techniques/Calculations 

 

Model file 

 

The model file is created as part of the model tuning stage (see below for details). It contains all the parameters that 

are required to restore and run the trained model. 

 

It also contains all the parameters that are required to restart the training from where it finished, which could be used 

in the future to refine the model using more data rather than starting again. Note that there is no option in the Excel UI 

to restart the training. 

 

Feature generators 
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The feature generators are internal classes that handle tasks related to the data for the individual input and output 

attributes for the neural network model. For example, there is functionality like extracting the relevant attribute from 

the EO data frames and converting it to the correct Pandas data type (including categorical), converting categories to 

integer levels, converting categories to one-hot encoded binary vectors, and the reverse conversions (e.g. numerical 

arrays to Pandas categorical). Encapsulating this functionality in one place means that conversion between user-

friendly data types (e.g. Pandas data frame containing various data types) and other data types required by the model 

(e.g. PyTorch tensors containing a single data type) and back is easy and is guaranteed to use the same definitions, 

such as the feature name, category names and order, throughout the model. 

 

This also has the functionality to define which input features are also output features from the model so that the same 

data structure can be used to process the model inputs and outputs. 

 

As mentioned above, care is taken to ensure that missing data is always encoded as a level of -1 in the arrays of 

integer levels and as a vector of all zeros in the input arrays used by the neural network model. The functionality to 

add simulated errors to each attribute is also part of these classes, since the necessary actions can vary depending 

on the type of the attribute. 

 

These objects need to be configured with the desired attribute definitions. For the training process, these definitions 

are taken from the model parameters JSON file, and the resulting objects are stored with the trained model in the 

model checkpoint file. For the evaluation and prediction processes, these objects are loaded from the model 

checkpoint file instead, in order to guarantee consistency with the trained model. 

 

Load data 
This step reads the GIS data from the input data file and prepares it for modelling. 

 

Inputs 

 EO data extract as Spatialite or Geopackage file 

Outputs 

 Dictionary containing processed asset data from EO 

Assumptions 

 Input data file is in any format that that can be read with Fiona7. 

 Bounding box parameter (if specified) overlaps with the data in the input data file. 

 Each RWO is uniquely identified by its RWO id. Apart from the attributes that are specifically related to 
splitting the geometry into tiles and parts, all the attributes should be constant for each RWO. 

 All materials of interest are specified in the model parameters file. 

Processes 

1. Read all layers from the input data file into a dictionary with one data frame per layer, using bounding box 
parameter (if specified) to filter the features to the specified area 

2. Fix data types by converting known columns into relevant Pandas datatypes (e.g. boolean, categorical, 
numeric, datetime, etc) 

3. Merge rows in each data frame to create one row per RWO id by merging the geometries of each row, 
discarding the attributes that are different for each part (e.g. “tilename”, “part”, “geometry_length”) and taking 
the only unique value for each of the other attributes. 

4. Clip the geometries to the bounding box parameter (if specified) 
5. Parse specification description attributes into parts 

                                                      
7 Fiona is the Python interface to the vector formats in GDAL. 

https://fiona.readthedocs.io/en/latest/manual.html
https://gdal.org/
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Techniques/Calculations 

 

Merge RWO 

 

The generic functionality to merge the rows per RWO is part of the GeoPandas library. It groups the features of each 

layer by the “id” column and, for each group, returns a feature with geometry corresponding to the union of all 

geometries in that group plus the only unique values8 for the other attributes, after discarding those that are different 

for each part RWO. This ensures that there is only one asset node per RWO in the spatial graph. 

 

The main advantages are that it removes the arbitrary distinction of crossing a grid square edge from the model and 

minimises the number of asset nodes. The disadvantage is that disconnects at the grid square edges or missing parts 

result in multi-geometry objects (e.g. MultiLineString) with no way for the graph model to know that there is a gap in 

the geometry. 

 

Specification parsing 

 

The specification parts attributes are extracted by parsing the specification description field of the associated asset. 

These are: 

 cable: specification_description 

 wire: specification_description_1 (note that specification_description_2 is ignored) 

From these strings, the following parts of the specification are extracted: 

 material: return the longest pattern matching a pre-calculated list9 that can be found within the string, ignoring 
case. 

 size: 2 or more digit integer or decimal number as a whole word, then converted to a number and numbers 
less than 1 are converted from square inches to square millimetres. 

For the material, the pre-calculated list is stored in the model parameters file that is read in the initialisation step. By 

taking the longest match, it will deterministically match more specific material like “solidal” or “cad cu” rather than less 

specific ones like “al” and “cu”. These patterns were extracted from the company directives10. 

 

For the size, the largest imperial size encountered is 0.75 square inches. Hence, the threshold for detecting imperial 

vs. metric sizes is set at “1”. 

 

When the relevant pattern does not match anything, it is treated as missing. 

 

For example: 

 “25 hyb”  material = “hyb”, size = 25 

 “0.04”  material = NA, size = 25.8064 

 “2c 35 abc”  material = “abc”, size = 35 

 “3 x 185 1c txal epr”  material = “al”, size = 185 

 “4 s/c”  material = “s/c”, size = NA 

 “2w sv unknown from unattributed”  material = NA, size = NA 

 

Prepare graph data 
This step extracts the node and edge data from EO data for the spatial graph model described in section 3.3 and 

converts it into appropriate data types. It also generates synthetic errors in the input data (training and evaluation) and 

                                                      
8 For each of these attributes of each RWO, the code checks that the values for each part are equal and then returns 
that one value. 
9 The pre-calculated list of possible 
10 WPD Company Directive STANDARD TECHNIQUE: SDB/3 and SDB/4 
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selects which training fold each asset will be part of (training only). These calculations are intended to be independent 

of the graph neural network design. 

 

Inputs 

 Dictionary containing processed asset data from EO 

Outputs 

 Dictionary containing node and edge data for the graph 

Assumptions 

 All categorical values are defined in the model parameters file. 

 The breakpoints for digitising the specification size attribute are defined in the model parameters file. 

 For synthetic error generation, see the detailed section below. 

 For training folds generation, see the detailed section below. 

Processes 

1. Extract assets and asset attributes from EO data, including circuit_id and geometry 
2. Extract locations from the asset geometries 
3. Create position edges, i.e. edges between assets and locations 
4. Create spatial mesh of location nodes, i.e. distance edges 
5. Convert asset attributes to numerical arrays 
6. Add simulated errors to asset attributes (evaluation and training) 
7. Split asset nodes into training, validation and test folds (training only) 

Techniques/Calculations 

 

Spatial edges 

 

There are various potential approaches for the creation of spatial edges. Ideally, this should provide a connected 

graph11, since this allows messages to be passed between any two location nodes, in principle. The spatial edges 

should not be too dense, since this increases the size of the graph and the time to execute the model, or too sparse, 

since this decreases the message-passing ability of the network. 

 

The current model uses a Delauney triangulation for the spatial edges. This has the following properties: 

 Complete triangulation of the location nodes. 

 Mathematical definition: maximises the minimum angle of all the triangles in the triangulation. 

 Seems to strike a good balance for the number of edges per node. 

 Fast to compute: quasilinear12 time complexity. Implemented natively in most geometric libraries13. 

Alternative approaches include the following, which could be explored as part of the next phase of development. 

 Nearest k-neighbours: Not guaranteed to produce a connected graph. Choice of k might need to be different 
in different situations, e.g. close to substation vs along a transmission line. 

 All neighbours within given distance: Not guaranteed to produce a connected graph. Choice of distance might 
need to be different in different situations, e.g. urban vs rural. 

                                                      
11 i.e. if there’s a path between every pair of location nodes 
12 𝑂(𝑛 log𝑛) where 𝑛 is the number of locations 
13 including shapely, PyGEOS and PostGIS 

https://shapely.readthedocs.io/en/stable/manual.html#delaunay-triangulation
https://pygeos.readthedocs.io/en/latest/constructive.html#pygeos.constructive.delaunay_triangles
https://postgis.net/docs/ST_DelaunayTriangles.html
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 Alternative geometrical constructs, like relative neighbourhood graph or Gabriel graph, tend to be more sparse 
than the Delauney triangulation (in fact most are subgraphs of it) so it’s only worth considering these if the 
current model is too expensive. 

The Euclidean length of each edge is stored as an edge property. 

 

Synthetic errors 

 

Synthetic errors are only added to the input data as part of the training and evaluation processes. The creation of 

synthetic errors is based on the following assumptions: 

 Synthetic errors only affect asset node feature vectors. 

 Only the attributes predicted by the model can have errors, i.e. attributes like geometry are always correct. 

 The possible patterns of error are “all missing”, “one missing” and “one corrupt”. 

 When an attribute is corrupt, it can take any other permitted value for that attribute, independent of the original 
values (except that it cannot be the same) and the other attributes. 

 For the “one missing” and “one corrupt” errors, the choice of attribute affected is uniformly at random. 

 Errors are uncorrelated between assets. 

Hence, the synthetic error generation works by selecting a random proportion of asset nodes to apply each type of 

error pattern to without replacement. The default proportions are 15% “all missing”, 15% “one missing” and 20% “one 

corrupt”, which leaves 50% of assets with the original values unmodified. If the selected attribute to modify is already 

missing, then it is left as missing. 

 

Training folds 

 

Training folds are only used as part of the training process. The creation of the training folds is based on the following 

assumptions: 

 Assets to include each fold can be chosen at random (i.e. without any spatial correlation) 

 Each fold should have a similar composition of output attribute values to address issues related to the balance 
of the classes. 

Hence, the training fold generation works by grouping the assets by the output attribute values and assigning them 

different groups IDs, then using a stratified train-test split based on those group IDs to split the assets between the 

required folds. The default proportions are 20% validation, 30% test, which leaves 50% for training. 

 

Splitting the assets like this ensures that the folds have a similar composition also in terms of spatial distribution; 

although, every validation and test asset will be spatially close to some training assets. This is fine, possibly even 

beneficial, for a model where the objective is to apply it to the same area as was used for training. If the model is to be 

optimized for its application to unseen data instead, as might be the case in a future phase of development, then it 

would be better for the validation and test folds to be entirely separate graphs; however, then it is challenging to 

ensure that the compositions of those folds are sufficiently similar. 

 

Make graph 
This step constructs graph data structure described in section 3.3 from the tables created above and organises data 

for training and evaluation. Some of these calculations are specific to the graph neural network architecture selected. 

 

Inputs 

 Dictionary containing node and edge data for the graph 

Outputs 

 Spatial graph data structure 
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Assumptions 

 N/A 

Processes 

1. Construct graph data structure from node and edge data frame, including reverse edges and self-loops 
2. Encode input data for all nodes (e.g. one-hot encoding) using the feature generators 
3. Store all relevant node and edge features in node and edge data dictionaries as PyTorch tensors 
4. Calculate edge weights for distance edges (i.e. location–location) 
5. Set node features for node types without data to all zeros 
6. Create training, validation and test versions of the node feature tensors with all features of the asset nodes for 

the higher-level test sets set to “missing” and the data unmodified for the other node types (training only) 

Techniques/Calculations 

 

Spatial edge weights 

 

The simplest way to factor the spatial edge distances into the graph neural network model is to convert them to 

weights, then using weighted graph convolution layers, as mentioned in section 3.3. 

 

The objective of the edge weights is to make the neural network place higher importance on nearby locations than on 

ones that are further away. Hence, the weight for the edge between 𝑢 and 𝑣 is calculated as follows: 

𝑤𝑢,𝑣 =
1

max(𝑑𝑢,𝑣 , 𝑑min)
 

Where, 𝑢 and 𝑣 are location nodes, 𝑑𝑢,𝑣 is the Euclidean distance between them and 𝑑min is a minimum distance 

parameter, which limits the maximum weight that can be applied to a weight, i.e. all edges shorter than 𝑑min are 

treated as if the distance was 𝑑min. The default value for 𝑑min is 1 metre. 

 

Training, validation and test feature vectors 

 

This step is only required during the training process, when the assets are split between training folds. This is an 

important step to avoid data leakage between the training, validation and test datasets. 

 

Since the validation and test assets are all part of the graph used for training and the feature vectors for those nodes 

are highly correlated with the labels (i.e. original values), it is necessary to mask that information during training (and 

validation) in order to avoid the risk that the neural network will memorise it and bias the validation and testing results. 

Hence, the feature vectors for asset nodes that are in the validation and test folds must be masked for training, and 

those in the test fold must be masked for validation. Here, “masking” means “replacing with zeros”14, since it is not 

possible to remove asset nodes from the graph without fundamentally affecting the graph structure. 

 

The masking is achieved by creating separate node feature arrays for training, validation and test, that contain only 

feature vectors for suitable nodes, with the values for the remaining assets set to zero. 

 

One consequence is that the validation and test graph both contain more information, especially less missing data, 

than the training graph, so it is not unusual for the validation and test accuracy to exceed the training accuracy (or 

equivalently the loss to be lower). 

 

Train model 
This step is only run as part of the training process. It trains the graph neural network model and the score thresholds. 

The outputs are saved to the model file. The design of the graph neural network model, including the loss and 

optimizer, is described in section 3.3 above. 

 

                                                      
14 Note that the feature generators (see above) were designed such that all zeros in the encoded vectors means a 
missing value. 
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Inputs 

 Spatial graph data structure 

Outputs 

 Trained model, including sets of thresholds 

 Model checkpoint file 

Assumptions 

 Spatial graph data structure contains all the data required for the model training and evaluation. 

 Good model performance can be achieved without early stopping or other hyperparameter optimization. 

 Parameters for threshold fitting are provided in model parameters file. 

Processes 

1. Configure neural network model 
2. Configure loss functions 
3. Configure neural network optimizer 
4. Train model using training fold with validation fold for monitoring 
5. Fit score thresholds using training fold (as described above) 
6. Evaluate model on test fold to check observed performance during training 
7. Save model checkpoint file 

Techniques/Calculations 

 

Validation and Testing 

 

The training fold is used to update the parameters of the neural network model, via the standard process of model 

evaluation, loss evaluation and back-propagation. 

 

In every training iteration, the performance on the validation fold, using the validation feature vectors, is evaluated to 

give an independent assessment of the performance of the current model. This is a more representative measure of 

the model performance than the performance using the training fold and the training feature vectors. In principle, the 

performance using the validation fold could be used to optimize the model hyperparameters, such as number and size 

of neural network layers, learning rate, number of epochs15, etc. However, this is not implemented for this model. 

 

The test fold is only evaluated at the end of the training. This performance should only be used as a check on the 

performance statistics observed during, and at the end of, the training for the training and validation folds. The model 

parameters should not be modified in order to maximise the test performance, otherwise it will result in data leakage 

between this independent test data and the training and validation data. If the model parameters are to be manually 

optimised, then the final validation performance values or the results of the separate evaluation process (i.e. with 

different data errors or on a different area) should be used instead. 

 

Accuracy statistics 

 

An accuracy statistic is required for monitoring the training progress, since this is more easily understood by the user 

than the loss. Since this model have several output heads, these must be combined to create a single accuracy score. 

 

Since the model performance is expected to be good, the combined accuracy is defined in the most conservative way 

possible, i.e. all the predictions for a given asset must be correct for it to count as correct for the accuracy statistics.  

                                                      
15 i.e. stopping the training when the validation accuracy stops improving. 
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Only attributes that are valid for that asset type and have non-missing true (i.e. original) values can be checked; these 

are referred to as “valid attributes”. Some assets have no valid attributes and these must be excluded from the 

calculation. 

 

Hence, the combined accuracy statistic is defined as “proportion of assets with all their valid attributes predicted 

correctly out of those with any valid attributes”. 

 

Model checkpoint file 

 

The model checkpoint file which is loaded as part of the model initialisation for the evaluation and prediction 

processes, must be created as part of the model training process. It contains all the parameters for the trained model, 

including the fitted score thresholds. 

 

The file also contains all the parameters relating to the loss functions and optimizer, which are required to resume the 

training later, either because training was interrupted or to refine a model for a more specific application. While this 

process is not implemented in this version of the model, the necessary parameters are present in the model 

checkpoint file. 

 

Evaluate model 
This step calculates predictions for all assets in input dataset using the trained model and checks the selected score 

thresholds. This is identical to the evaluation process that is part of the model training except that the whole dataset is 

used without splitting into folds and the scores are checked using the selected thresholds out of the ones fitted during 

the training. 

 

Inputs 

 Spatial graph data structure 

 Trained model, including sets of thresholds 

 Name of selected thresholds 

Outputs 

 Dictionary containing results of model evaluation 

Assumptions 

 Selected thresholds matches one of the sets of thresholds from the model training. 

 Model evaluation can use all the input data without holding back data from validation or testing folds. 

Processes 

1. Calculate the raw scores per attribute for all asset nodes using the neural network model 
2. Calculate predicted (output) values and confidence scores for every attribute and asset in the dataset 
3. Compare the confidence scores with the selected thresholds 
4. Compare with original values and create evaluation outputs (evaluation and training) 

Techniques/Calculations 

 

N/A 

 

Create reports 
This step creates detailed and summary output reports as CSV and GPKG (as appropriate). 

 

Inputs 



33 | westernpower.co.uk/innovation 
  

 Dictionary containing processed asset data from EO 

 Dictionary containing node and edge data for the graph 

 Spatial graph data structure 

 Dictionary containing results of model evaluation 

Outputs 

 Model outputs report 

 Exceptions report and summary 

 Evaluation report and summary (training and evaluation) 

 Classification report (training and evaluation) 

Assumptions 

 GIS applications used by WPD can read GPKG files 

Processes 

1. Construct model outputs data frame, including converting raw outputs back to user-friendly ones using feature 
generators 

2. Extract exceptions report data frame and summary from model outputs data frame 
3. Extract evaluation report data frame and summary from model outputs data frame (training and evaluation) 
4. Create classification report from evaluation report data frame (training and evaluation) 
5. Write all reports as CSV and GPKG (where applicable) 

Techniques/Calculations 

 

Reports 

 

The spatial model produces some reports with detailed results at the level of the attributes of each asset and some 

summary reports that summarise the results across the entire area covered by the task. These are summarised in the 

table below. 

 

The detailed results are saved as both CSV files (for use with analytical software16) and GeoPackage files (for use 

with GIS software). The CSV files have one row per attribute per asset, while the GeoPackage files have one layer 

per attribute, then one feature per asset. The summary results are saved as CSV only. 

 

For the training and evaluation tasks, the evaluation report, evaluation summary and classification report are most 

relevant. For the prediction task, the exceptions report and exceptions summary are more relevant. 

 

Report Name Purpose Description 

Detailed 

model_outputs Understanding all the outputs from 

the model 

All relevant inputs and outputs from model. 

All the other reports are a subset or summary of the 

data in this report. 

exceptions_report End user investigating suggested 

changes to the GIS data 

All rows from model_outputs where output value is 

different from input value and score meets criteria. 

Excludes columns that are not interesting for the end 

user. 

evaluation_report Understanding the behaviour of the 

model in response to simulated 

errors 

All rows with non-missing values in the original data. 

Only produced when synthetic errors are added to 

the input data. 

Summary 

                                                      
16 The CSV reports can be opened in Excel but be aware that Excel may incorrectly interpret some of the values. For 
example, it replaces “1/1” with “01-Jan” and “10-20” with “Oct-20”. 
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Report Name Purpose Description 

exceptions_summary End user understanding the 

distribution of identified errors across 

asset types and attributes 

Number of rows with each error_code value (see 

below) for each asset type for each attribute. 

evaluation_summary Understanding the overall 

performance of the model on 

simulated errors for different asset 

types and attributes 

Accuracy (proportion exactly correct) for each asset 

type and attribute for each error_code. 

Only produced when synthetic errors are added to 

the input data. 

classification_report Understanding the overall 

performance of the model on 

simulated errors for different 

attributes and attribute values 

Classification report (see below) for each attribute. 

Only produced when synthetic errors are added to 

the input data. 

Table 6: Model 2 Output Reports 

 

Columns 

 

These are the columns of the model outputs file. All the other reports are a subset or summary of these data. 

 Exceptions report: all rows with “changed” = True and “score_ok” = True 

 Exceptions summary: number of rows for each combination of “asset_type”, “attribute_name” and 
“error_code” 

 Evaluation report: all rows with “true_ok” = True 

 Evaluation summary: average of “correct” column for each combination of “asset_type”, “attribute_name” 

and “error_code” out of all rows with “true_ok” = True 

 Classification report: classification report (see below) for each “attribute_name” using all rows with “true_ok” 
= True 

The “Excluded from” column indicates when each column is not included in the outputs. For example, it may be 

constant or not interesting for some reports and it may not be produced for all tasks. 

Column Description Excluded from 

asset_id Index of associated asset node in spatial graph Exceptions report: internal 

rwo_id Real world object ID from EO  

asset_type Asset type from EO  

circuit_id Circuit ID from EO (if available)  

geometry Geometry from EO, merged across tiles and parts (WKT)  

attribute_name Name of attribute for this line  

input_value Input value of attribute to model (category)  

output_value Output value of attribute from model (category)  

changed Whether output value is different from input (Boolean) Exceptions report: always True 

score_abs Absolute score from model (maximum of scores per category)  

score_rel Relative score from model (difference between scores for top 2 

categories) 

 

score_ok Whether score meets criteria (Boolean) When thresholds is ”none”: 

treated as True 

Exceptions report: always True 

error_code Error code for output (see below)  

error_code_simple Simplified error code for output (see below) Exceptions report: internal 

true_value Original value of attribute in EO: treated as ground truth by the 

model (category) 

Prediction task 

true_ok Whether original value is not missing (Boolean) Evaluation report: always True 

Prediction task 

input_modified Whether input value is different from original value Prediction task 

error_code_true Simplified error code if output were the original value (i.e. ideal 

error code value) 

Prediction task 

correct Whether output value matches the original value (treated as 

ground truth) 

Prediction task 

error_type What kind of error was added in the input data (see below) Prediction task 

fold Which training fold the asset is part of (see below) Prediction or Evaluation task 
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Table 7: Model 2 Output Columns 

 

Enumerations 

 

The enumerated columns listed above have the following possible values: 

Code Description Meaning 

error_code: Kind of error detected by the model. 

no_error No error Output value matches the input value. 

missing_value Missing value Input value was missing. 

wrong_value Wrong value Output value different from input value, which was also not missing. 

missing_value Missing value - low score Missing value, but score for predicted value does not meet criteria. (i.e. low 

confidence score) 

wrong_value Wrong value - low score Wrong value, but score for predicted value does not meet criteria. (i.e. low 

confidence score) 

error_code_simple: This is like error_code but ignoring the score criteria. 

no_error No error Output value matches the input value. 

missing_value Missing value Input value was missing. 

wrong_value Wrong value Output value different from input value, which was also not missing. 

error_type: Kind of error that was simulated in the data. 

no_error No error Input data matches original data exactly. 

missing_all All values missing All output attributes were replaced with missing values in the input data. 

missing_one One value missing One output attribute (at random) was replaced with a missing value in the 

input data. If the selected attribute is already missing, then it is not 

changed. 

corrupt_one One value corrupt One output attribute (at random) was replaced with a random different 

value in the input data. If the selected attribute is already missing, then it is 

not changed. 

fold: Which training fold the asset is part of. 

train Training set Asset labels are used for tuning the model. 

validation Validation set Asset labels are used to supervise the model tuning. 

test Test set Hold-out data for final model testing. 

Table 8: Enumerations in Model 2 Outputs 

 

Classification report 

 

The classification report file is created by concatenating the multi-label classification reports for each classification 

output (i.e. one per attribute) from the model using all of rows that are part of the evaluation. Remember that this 

assumes that the original values are the ground truth. 

 

Each of the multi-label classification reports are constructed as follows: 

 There is one row for each associated attribute value, which is referred to as the “row value” below 

 True positives (TP) is the number of rows where the output and true values are both equal to the row value 

 False negatives (FN) is the number of rows where the true value equals the row value but the output value 
does not 

 False positives (FP) is the number of rows where the output value equals the row value but the true value 
does not. 

 True negatives (TN) is the number of rows where neither the output or true values are equal to the row value 

 Precision is the accuracy out of the rows with output values equal to the row value = TP / (TP + FP) 

 Recall is the accuracy out of the rows with true values equal to the row value = TP / (TP + FN) 

 F1-score is a balanced accuracy metric, which is the harmonic mean of the precision and recall = 2 TP / (2 TP 
+ FP + FN) 

 Support is the number of rows where the true value equals the row value = TP + FN 

 

3.5. Code structure 
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The main parts of the spatial model application are implemented as follows. 

 

Top-level model application logic 

 wpd_seam.graph.main: top-level model application logic and Excel UI entry-point interface. 

 wpd_seam.graph.__main__: command-line interface to model application. 

Data import/export and preparation 

 wpd_seam.data.access: routines for reading and writing database-like data files, including SQLite databases 

and Fiona vector mapping files. 

 wpd_seam.data.eo: data preparation routines specific to the EO data files. 

 wpd_seam.features.specification: routines for parsing specification description strings. 

Spatial graph model 

 

The project source code contains the implementation for 4 incremental versions of the spatial graph model, with each 

one adding more features and functionality to the model. The code for each version of the spatial graph model is in a 

separate sub-module. The current version is v4 and it is the only maintained version. Earlier versions are also missing 

some of the final functionality, such as output reports and threshold tuning. 

 wpd_seam.graph.v4: nodes: locations, assets; edges: distance, position; attributes: network type, operational 

voltage, specification material, specification size. 

Each version of the model has the functionality divided between the following functions and classes within the 

corresponding sub-module. 

 prepare_features: routines to prepare the relevant feature generators for this model. 

 SpatialGraphGenerator: routines for constructing the graph data structure from the EO database. 

 ModelWrapper: routines for constructing, training and evaluating the neural network model on the spatial 

graph data. 

Common functionality shared between the different versions of the model is implemented in the following modules: 

 wpd_seam.graph.features: routines for extracting and processing features that go into and come out of the 

spatial graph model. 

 wpd_seam.graph.neural: neural network models used in the spatial graph model. 

 wpd_seam.graph.spatial: common routines for the spatial graph model implementation. 

 wpd_seam.graph.outputs: routines for preparing, saving and loading output reports. 
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4. User Interface 

4.1. Description of the User Interface 

The User Interface (UI) is an Excel based tool designed to enable a user to run the SEAM models without the need to 

directly interact with the Python code and to make adjustments to key model parameters. The UI is launched from an 

Excel workbook and the user navigates the tool through a series of VBA user forms to perform tasks and run the 

models.  

 

The following tasks can be performed through the UI: 

 Configure the Python settings to run the models locally 

 Select which model is to be run 

 Select the key data input files 

 Set the file path for output reports 

 Determine the parameters and/or thresholds to be used for a model run 

 Setup multiple profile settings for each model and duplicate existing profiles 

 Record a log of model runs carried out by the user 

These following sections describe the design of the UI and provide user instructions for setting up and running the two 

SEAM models. 

  

4.2. High-level design 

The following diagram outlines at a high-level the relationship between the different user forms that are available to a 

user of the tool and how these can be navigated to define settings, adjust parameters, and run the models. 

 
Ok

 
Figure 10: User Interface high-level design 

 

When setting up the UI and SEAM models for the first time, the user must perform the following two activities: 

1. Configure Python setup (see Section 4.3.3 for further information) 
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2. Create a profile setting with the intended input and output settings and model parameters (see Section 4.3.5 
for further information) 

4.3. User forms 

4.3.1. Home 

Description 

Landing user form following launch of the model. From here the user can initialise/adjust the local Python setup and 

access the SEAM models. 

 

 
Figure 11: Screenshot of 'Home' user form 

 

Tasks 

The following tasks can be performed by user: 

 Access the ‘About’ information associated with the version of the model 

 Access the ‘Python Setup’ to initialise/adjust settings 

 Select and launch Model 1 and Model 2 

User-defined settings 

There are no user-defined settings available in this user form. 

 

4.3.2. About 

Description 

Presents key information associated with the version of the model being used. There is a developer option to change 

this information (see Section 4.5). 
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Figure 12: Screenshot of 'About' user form 

 

Tasks 

No tasks are performed within this user form. Displayed for information purposes only. 

 

User-defined settings 

There are no user-defined settings available in this user form. 

 

4.3.3. Python Setup 

Description 

User form for defining the Python configuration settings. The model uses xlwings which is an open source Python 

library that makes it easy to call Python from Excel and vice versa. 

 

The model uses the RunPython function in VBA to call the Python scripts that run the SEAM models and pass the 

variables that are defined by the user in the profile settings. 

 

 
Figure 13: Screenshot of 'Python Setup' user form 

 

Tasks 

The user if presented with a user form containing the option to define the xlwings Python and conda settings (these 

overwrite the global settings). These need to be correctly defined for a local setup to run the models. 

 

User-defined settings 

See Appendix 1: Python setup instructions for the steps to follow for the Python setup. The solution is designed so 

that an environment can be installed from snapshot (e.g. for non-networked PC). 
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4.3.4. Run model 

Description 

Accessed from the ‘Home’ user form. This is used to execute a run of the model selected by the user based on a 

specified profile. The same user form structure is applied for each of the SEAM models. 

 

 
Figure 14: Screenshot of 'Run Model' user form 

Tasks 

The following tasks can be performed by user: 

 Access the ‘Profile Settings’ user form to create or amend the model profiles  

 Select the profile to be used for a model run 

 Execute a model run  

User-defined settings 

The profile to be used for the model run is selected from the Profile dropdown menu. 

 

4.3.5. Profile settings 

Description 

Accessed from the ‘Run Model’ user form. This user form is used to create, amend, and save profiles that are used to 

run the models. The same user form structure is applied for each of the SEAM models. 

 

 
Figure 15: Screenshot of 'Profile Settings' user form for model 1 
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Figure 16: Screenshot of 'Profile Settings' user form for model 2 

 

Tasks 

The following tasks can be performed by user: 

 Define inputs, outputs and parameters and save a new profile 

 Amend inputs, outputs and parameters of existing profiles and save changes 

 Remove existing profiles 

 Access the ‘Duplicate Profile’ user form 

User-defined settings 

 

Model 1 

Setting Type Description 

Input directory Folder path Provides the path to the directory which contains the input 

data files.  

UPRN Filename Name of the file in the input directory which contains the OS 

Open UPRN dataset (.csv) 

Connectivity Filename Name of the file in the input directory which contains the 

CROWN customer connectivity dataset (.xlsx) 

MPANS Filename Name of the file in the input directory which contains the 

CROWN customer connectivity dataset including MPANs 

(.xlsx) 

Electric Office Filename Name of the file in the input directory Electric Office GIS 

database (.sqlite) 

Aggregation func String: min, mean, max Determines how capacity backfilling should be applied: 

- Min / mean / max of circuit and area cable or wire of 
the same type 

- Min / mean / max of neighbours which backfilling 
synthetic cables / wires in the circuit 
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Standard dev Float Determines the % of the mean demand peak as the standard 

deviation when calculating the design demand at the 

consumer: 

 

Design demand = Mean demand + 1.28 x σ 

 

Where σ = Mean demand x Standard dev 

 

This design demand corresponds to a 90% probability of 

meeting the demand within the design voltage regulation – 

an acceptable level of risk (ACE 105). 

Threshold Float This is the distance threshold (in metres) for the distance 

between the substation location and the nearest node on the 

circuit. 

Head room thresh Float This is the head room threshold (kW) for flagging a wire / 

cable as a violation when (capacity – flow) < threshold 

Head room pc 

thresh 

Float This is the percentage head room threshold for flagging a 

wire / cable as a violation when (capacity – flow) / (capacity) 

< Head room pc thresh 

Area bounds X, Y coordinates Defines the minimum and maximum X and Y coordinates for 

the area bound to be included in the model run. For example, 

the training area has a bounding box with X in [248000, 

264000] and Y in [126000, 141000]. 

Export location Folder path Provides the folder path to export the output reports following 

completion of a model run. 
Table 9: Description of user profile settings for model 1 

Model 2 

Setting Type Description 

Process List: Training, Evaluation, 

Prediction 

Training: This process is used to obtain a new trained model 

that can be used to generate predictions. The model is 

trained against the data for a selected region taking the 

original data as ground truth and adding synthetic errors to 

form the input data. The GNN model is iteratively optimized 

to increase the number of output values from the model that 

match the true (original) values given the corrupted input 

data. 

Evaluation: This process is used to measure the ability of a 

pre-trained model to make correct predictions, given data 

with synthetic errors. As for the training process, it uses the 

original data for the selected region as ground truth and adds 

synthetic errors to form the input data. It can either be 

applied in a transductive (i.e. same region as training, but 

different synthetic errors) or inductive (i.e. different region 

from training) manner. 

Prediction: This process is used to identify errors in the 

original data and obtain suggested corrections. It uses the 

pre-trained model to generate predictions using the original 

data for a selected region as the input data. This process 

outputs the list of suggested corrections that meet the 

necessary scoring thresholds. It can either be applied in a 

transductive (i.e. same region as training) or inductive (i.e. 

different region from training) manner. 

EO data file File path Provides file path to the Electric Office dataset (SQLite). 

Model file File path Note this file is an output for the training process and an 

input for the evaluation and prediction processes. Since it is 
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created by the training, it does not need to exist when 

running that process and, if it does exist, then it will be 

overwritten. If it does not exist, then manually add the file 

extension to the path in the user form text box. 

Model parameters File path Provides file path to read the model parameters. These are 

parameters used by the model that are not defined in the UI 

(e.g. threshold quantile settings). They are configurable by 

making changes directly in the file.   

Area bounds X, Y coordinates Defines the minimum and maximum X and Y coordinates for 

the area bound to be included in the model run. For example, 

the training area has a bounding box with X in [248000, 

264000] and Y in [126000, 141000]. 

Thresholds List: Low, Medium, High Determines the threshold for filtering the output reports 

based on confidence levels. The quantiles used for the 

tuning are configurable via the model parameters file, and 

the default values are “low” = 0.2, “medium” = 0.5, “high” = 

0.8. This means that, for example, after training, 20% of the 

changes identified in the training dataset had scores that 

were below the “low” threshold. The user can also select 

“none” to disable the thresholds 

RNG entropy Numeric Random seed sequence used for simulation of errors during 

the training and evaluation processes. To recreate the 

random result, the seed sequence can be input here – the 

value is included in the output text file following a model run. 

If it’s left blank then a new random value is created. 

Export location Folder path Provides the folder path to export the output reports following 

completion of a model run. 
Table 10: Description of user profile settings for model 2 

 

4.3.6. Duplicate profile 

Description 

Accessed from the ‘Profile Settings’ user form. This is used to duplicate an existing profile and save under a new 

profile name. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17: Screenshots of 'Duplicate Profile' user forms 

 

Tasks 

The following tasks can be performed by user: 

 Select an existing profile to duplicate 

 Create and save the duplicate with a new profile name 

User-defined settings 
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The user selects the profiles to be duplicated from the dropdown menu on the initial user form and the new profile 

name is entered on the subsequent user form. 

 

4.4. Model log 

Following the completion of a model run a log is maintained in Excel workbook in the ‘Log’ worksheet. The following 

details are stored in the log: 

Field Model 1 Model 2 

Model The model that was run (Model 1 or Model 2) 

User The username from System Environment Variables 

Settings Profile name 

Report Folder path for output reports 

Timestamp DD/MM/YYY HH:MM:SS of model run 

Parameter (1-5) Aggregation function; Standard 

deviation; Threshold; Headroom 

threshold; Headroom pc threshold 

N/A – blank 

X (min, max); Y (min, max) Area bounds 

RNG entropy N/A Random value 

Input file (1-4) UPRN; Connectivity; MPANs; Electric 

Office  

Electric Office; Model file; Model 

parameters 

Table 11: Model log details 

 

4.5. Developer options 

There are a series of hidden sheets in the UI workbook which are not intended to be accessed by users of the model 

but can be amended for development purposes. The following table outlines the purpose of the sheets and how they 

can be used for future development: 

 

Sheet Description 

Model 1 This sheet is used to store information on the profile settings in Model 1 and referenced when 

a run is recorded in the log. This is automatically updated when changes are made in the UI. 

Model 2 As above for Model 2. 

xlwings.conf This sheet contains the Python setup information defined during configuration process in the 

UI. The format and variables are structured to be read by the xlwings VBA module. 

About This sheet contains the information presented in the ‘About’ user form. This can be edited to 

change the information displayed in the UI. 

Table 12: Summary of UI hidden worksheets 
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Appendix 1: Python setup instructions 

USER SETUP 

 

Install environment from snapshot (e.g. for non-networked PC) 

 

See https://conda.github.io/conda-pack/#commandline-usage. 

 

Note that conda must be installed first. 

1. Run conda info and find the “envs directories” settings. Choose one of these as the location for the 

environment. For example: C:\Users\<username>\.conda\envs. 

2. Unzip shapshot archive into a new directory in one of the env directories; you may need to create the envs 
directory. For example, if the envs directory is C:\Users\<username>\.conda\envs, then the contents of the 
archive should be extracted into C:\Users\<username>\.conda\envs\<name>, where “<name>” will be the 

name of the conda environment below. 
3. Open a command prompt 
4. Run conda env list and should see the name and location of the environment you extracted 

5. Run conda activate <name> 

6. Run conda-unpack 

7. Close and reopen the command prompt 
8. Run conda activate <name> 

9. Run xlwings addin install to install xlwings addin, if it’s not already installed 

10. Run python -m wpd_seam.xlwings.settings to get xlwings settings 

Updating the project code package 

 

Once a working conda environment is obtained, the project code can be updated using the Python wheel provided 

without creating a whole new environment. This can be done offline, provided there are no new dependencies. 

1. Open a command prompt 
2. Run conda activate <name> 

3. Run python -m pip install wpd_seam-<version>.whl 

Setup User Interface for initial model run 

 

The zip file contains the User Interface and input files needed to run the models. 

 

Extract UI and input files: 

1. Unzip the folder into its own directory. This does not have to be a specific location but will be where the input 
files will need to be stored and referenced from the UI. 

2. The UI (‘Spatially Enabled Asset Management User Tool v1 0.xlsm’) is in the first level of the directory. You 
can open and run the tool from here or move it to the location you want to access the UI. 

 

UI Python setup 

 

Click the ‘Python Setup’ button on the home user form. The required settings are given by the “xlwings settings” step 

above. Alternatively, you should set the conda path to the location where the conda distribution is installed and set the 

conda env to the name of the conda environment above. Once complete press ‘Save’. 

 

 

 

 

https://conda.github.io/conda-pack/%23commandline-usage
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TROUBLESHOOTING 

 

Cannot find conda command 

 

This means that the conda executable is not on your path. 

 

There are three alternatives: 

1. Run conda init in a command prompt to update the configuration of your command prompt (this may 

require admin access). See conda init --help for details. 

2. Your conda distribution may include a pre-configured command prompt, which can be used in place of the 
“Command Prompt” above. Check the Start Menu for “Anaconda Prompt”, “Miniconda Prompt”, “Miniforge 
Prompt” or similar. 

3. Replace references to conda above with the full path to the conda.bat file, until an environment is activated. 
On Windows, this is usually <conda install path>\condabin\conda.bat, where “<conda install 
path>” is the directory where the conda distribution is installed. For example, on some systems, this is 

C:\ProgramData\Anaconda3\condabin\conda.bat. 
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Appendix 2: Model 2 parameters file 

The contents of the default model parameters file for model 2 are as follows. This file defines various parameters used 

by the spatial model, especially the levels for the categorical variables and parameters relating to the structure and 

training of the neural network. 

 

spatial_model.json 

{ 

  "categories": { 

    "network_type": [ 

      "LV", 

      "MV", 

      "HV" 

    ], 

    "nominal_voltage_pp": [ 

      "110", 

      "230", 

      "400", 

      "11000", 

      "33000", 

      "132000" 

    ], 

    "spec_material": [ 

      "aaac", 

      "abc", 

      "acsr", 

      "al", 

      "c/c", 

      "cad cu", 

      "consac", 

      "cu", 

      "hdc", 

      "hyb", 

      "s/c", 

      "sac", 

      "solidal", 

      "wcon" 

    ], 

    "spec_size": [ 

      0, 

      10, 

      20, 

      30, 

      60, 

      90, 

      140, 

      280, 

      550, 

      900 

    ] 

  }, 

  "training_kwargs": { 

    "f_val": 0.2, 
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    "f_test": 0.3 

  }, 

  "model_kwargs": { 

    "n_hidden": 12, 

    "conv_layers": 4 

  }, 

  "optimizer_kwargs": { 

    "lr": 0.01, 

    "weight_decay": 0.0005 

  }, 

  "num_epochs": 200, 

  "thresholds_kwargs": { 

    "quantiles": { 

      "low": 0.2, 

      "medium": 0.5, 

      "high": 0.8 

    }, 

    "include_missing": false 

  } 

} 
Table 13: Default model parameters file for model 2 
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Glossary 

Abbreviation Term 

Artificial Intelligence (AI) The training of computer systems with human intelligence traits like learning, problem 

solving, and decision making. 

Business-as-Usual (BaU) The normal execution of standard functional operations within an organisation. 

Command Line Interface 

(CLI)  

An alternative to the User Interface as a mechanism to run the models, particularly 

suitable for repetitive running of the model via a batch file or similar.  

Comma-separated values 

(CSV) 
An open tabular data interchange format 

Computer-Aided Drawing 

(CAD) 
Creation of computer models defined by geometrical parameters 

CROWN WPD enterprise asset management system. Holds data about assets which includes 

data defining the assets, condition data and defect data. It also records inspection 

and maintenance activities on the assets as ‘events’. 

Data Cleanse The action of identifying and then removing or amending any data within a database 

that is incorrect or incomplete. 

Electric Office (EO) WPD’s geospatial system which displays the network layout at all voltages 

Geospatial Information 

System (GIS) 

A data system capable of capturing, storing, analysing, and displaying geographically 

referenced information. 

OGC GeoPackage (GPKG) An open geospatial database format using SQLite 

Graph Convolution Network 

(GCN) 
Neural network architecture for machine learning on graphs. 

Graph Neural Network 

(GNN) 

A class of machine learning / deep learning methods designed to perform inference 

on data described by graphs. 

Integrated Network Model 

(INM) 

WPD’s combined dataset for 11kV and above that merges data from CROWN, GIS 

and PowerOn. 

JavaScript Object Notation 

(JSON) 
An open data interchange format. 

Linestring A data structure for representing lines (curved and straight) within the well-known 

text markup language for processing vector geometry objects.  

Machine Learning (ML) A subset of AI, the study and application of algorithms that improve automatically 

through experience. 

Meter Point Administration 

Number (MPAN) 

A unique 21-digit reference number used in the UK that identifies each electricity 

supply point. 

Planarise To create multiple line features by splitting the feature where they intersect. 

PowerOn WPD’s distribution management system used for system operations. 

Proof of concept (PoC) An exercise or demonstration to verify that concepts or theories have the potential for 

real-world application. 

Python An open-source general-purpose programming language. 

QGIS A free and open-source cross-platform desktop geographic information system (GIS) 

application that supports viewing, editing, and analysis of geospatial data 

Real World Object (RWO) Unique identifier of an object in Electric Office. 
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Relational Graph 

Convolution Network (R-

GCN) 

Heterogenous version of GCN 

SQLite An open SQL database engine and file format 

Unique Property Reference 

Number (UPRN) 

A unique number (1-12 digits in length) created by the Ordnance Survey for every 

addressable location in the UK. 

User Interface (UI) The means by which the user will interact with the model. 

Well-known text (WKT) A text markup language for representing vector geometry objects. 
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