
Wireless Communications for the UK Utility Industry

30th June 2021

WESTERN POWER

DISTRIBUTION

Serving the Midlands, South West and Wales

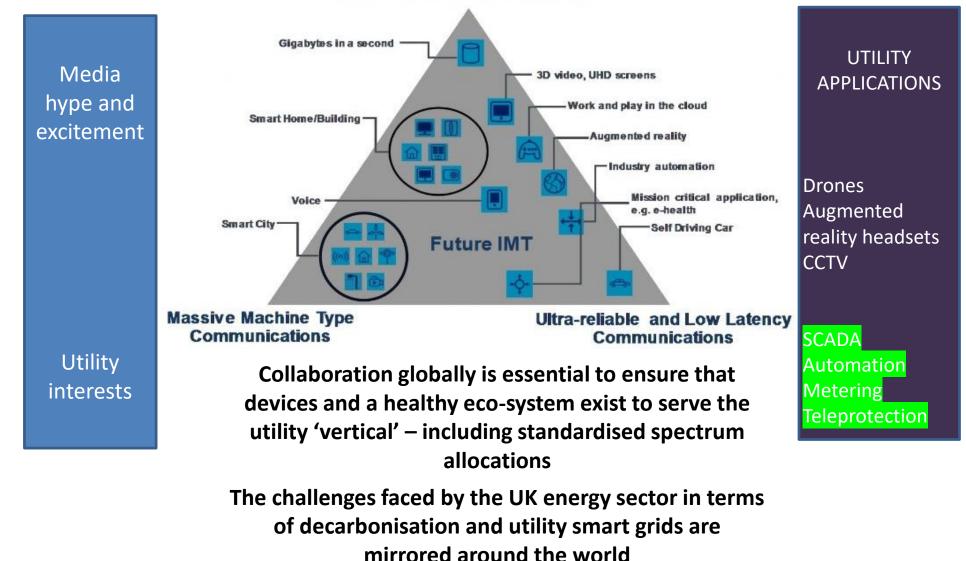
Agenda

- 09:30 09:35 Introduction and Housekeeping Ian Smith, Logistics Manager, WPD
- 09:35 09:50 Opening Comments and Scene Setting Graham Halladay, Operations Director, WPD
- 09:50 10:10 Spectrum and LTE Updates from Around the Globe Julian Stafford, Chief Technology Officer, Joint Radio Company (JRC)
- 10:10 10:30 LTE Studies Around the UK Bob Tyler, Operations/Programme Manager, Joint Radio Company (JRC)
- 10:30 10:45 Comfort Break
- 10:45 11:10 WPD LTE Trial Phil Rigden, Telecoms Manager, WPD
- 11:10 11:30 OFCOM Spectrum Update Vaughan John, Principal Spectrum Policy Manager, OFCOM
- 11:30 11:50 UK LTE Design, Build and Operation thoughts Peter Couch, Chief Executive Officer, Joint Radio Company (JRC)
- 11:50 12:20 Q & A Session
- 12:20 12:30 Wrap Up and Closing Comments

Spectrum & LTE updates from around the globe

Julian Stafford – Chief Technology Officer, Joint Radio Company Ltd (JRC)

Serving the Midlands, South West and Wales


Enabling a 'Smart Grid' Solution – why LTE ?

- Terrestrial wireless connectivity has always been a key component in the connectivity toolkit of energy utilities.
- In future the prominence of wireless connectivity is set to increase significantly as the most cost effective method to connect hundreds of thousands (potentially millions) of active devices in the smart grid – an increase of several orders of magnitude
- Legacy narrow band wireless systems have served the sector well for decades, however they have serious limitations when considering the scale of connectivity required by the evolving smart grid –
 - Proprietary nature virtually zero interoperability with other manufacturer's systems
 - Not scalable in terms of device numbers
 - Not scaleable in terms of throughput (majority will support less than 9.6 kb/s shared between devices vs anticipated requirements of hundreds of kilobits per second per device)
 - Expensive 'Truck roll' rip and replace often required as applications change over time
 - Vendor lock-in and obsolescence
 - No common approach to cyber security
- An LTE based system provides solutions to all of the above....

Utility Applications / IMT 2020

Enhanced Mobile Broadband

LTE Trials

- Poland PGE (combined Nokia & Ericsson system)
- Germany 450 MHz trial lead by Eon and Innogy
- Spain Iberdrola LTE conducted trials utilising muli-vendor hardware
- Portugal EDP 450 MHz trial with Huawei
- Ireland ESB trials at 410-430 MHz with Nokia & Huawei
- USA Multiple trials co-ordinated via Electric Power Research Institute and UTC
- Russia Trial in 450 MHz during 2018 World Cup with Tele 2 and Ericsson
- All the above have produced very positive results indicating the suitability of a private , multi vendor LTE solutions for the utility sector

The last two years has seen an unprecedented amount of positive activity – <u>Carbon Neutral Aspirations</u> are the main driver (COP 26)

February 2020 -' Role of Radio Spectrum Policy to help combat Climate Change' Rationale

Radio spectrum is the basis for electronic communications and broadband, but also key to important areas like climate change. Climate change is one of the predominant topics in European Union policies. In her political guidelines, the new Commission President Ursula von der Leyen has prioritised a 'green deal' stating: "I want Europe to strive for more by becoming the first climate-neutral continent". The climate-neutral target for Europe is 2050. The RSPG shares the opinion that the fight against climate change and its negative consequences is of utmost importance. Therefore, the RSPG establishes a work item to focus on spectrum policy aspects which are closely related to the efforts of ensuring climate-neutrality.

Scope of RSPG activity

Under the Climate Change work item, the RSPG will issue a debate within the Group, as well as with the relevant stakeholders, on how spectrum policy can help to combat climate change. To this end, questions that should be addressed are:

- Identify climate change-related aspects within spectrum management;
- How can spectrum management help to combat climate change?
- What concrete actions should be recommended at EU-Level?

Recent Consultations – all focusing on 400 MHz, LTE and Critical National Infrastructure (primarily Utility Smart Grids)

Slovakian Regulator January 2021 – future use of 400 MHz

ibpt 🕑

Norwegian Regulator – re-purposing of 410-430 MHz (2 x 1.8 MHz)

Spain – further input to frequency allocation table (May 2021)

Greek Regulator – consultation on 410-430 MHz future use (Autumn 2020)

Saudi Arabia – Consultation regarding migration from TETRA to LTE systems in the 400 MHz band to support energy infrastructure

Columbia – consultation on re-use of 400 MHz band

Initial discussions by Czech Regulator on future of 400 MHz band

Portugal – discussions ongoing regarding price of 400 MHz spectrum for the energy smart grids

Regulator in Netherlands consultation on 450 MHz (April 2021)

EXPENSION OF THE ADVANCE OF THE ADVA

UK – Ofcom continues review of spectrum requirements for Utility Sector

Successful Utility Spectrum Allocations for LTE based Solutions

September 2019, Poland – 450-470 MHz awarded (PGE) for private Utility Networks. Funding for network approved in March 2021

November 2019 - Ireland – 400 MHz Awarded (ESB) for LTE utility network – (Now engaged in procurement activity)

Successful Utility Spectrum Allocations for LTE based Solutions

July 2020 – Spain – 2.3 GHz earmarked for private utility LTE networks

III. OTRAS DISPOSICIONES

MINISTERIO DE ASUNTOS ECONÓMICOS Y TRANSFORMACIÓN DIGITAL Para optimizar su uso, la explotación de los canales 1 al 8 se efectuará de forma compartida por los diferentes usuarios. Los títulos habilitantes especificarán el número de canales que podrá utilizar cada usuario, sin especificar valores de frecuencia. La selección del canal o canales a utilizar en cada evento por cada usuario autorizado requerirá la coordinación previa a cargo de los propios usuarios.

El rango de frecuencias 2370-2380 MHz se reserva para redes de uso privativo del servicio móvil terrestre de banda ancha, preferentemente para la gestión de redes de servicios públicos de distribución de electricidad, gas o agua.

El rango de frecuencias 2380-2390 MHz se reserva para comunicaciones de uso privativo del servicio móvil aeronáutico en sentido descendente procedentes de sistemas de aeronaves no tripuladas (UAS). La explotación de este espectro se

March 2021 – Germany 450-470 MHz spectrum for private utility LTE Network

President Homann: "Frequency for the digitization of the energy transition""

Edition2020 Release date29.07.2020

//**\/450**connect

The draft provides that the frequencies will be used primarily for the supply of critical infrastructure savers for nationwide use. The allotment taker is to provide radio network infrastructure for operators of critical infrastructure. The inquiring operators of critical infrastructures are to be offered demand-oriented radio applications or opportunities for cooperation in network construction. It is also possible to leave frequencies to operators and thus enable their own use or further use of existing radio network infrastructures.

Operators of critical infrastructures have expressed a need for radio-based implementation possibilities for the control of their plants and networks. No exclusive frequency ranges have been available for this purpose. In September 2019, the Advisory Board of the Federal Network Agency voted in favour of continuing to provide the energy industry with the proven secure communication solution based on 450 MHz radio technology.

Other Related Activity at Global Level

Ongoing dialogue and advocacy with all EU and global regulators (especially Anatel (Brazil) & FCC DOE & DOD))

Continuing global engagement with ITU WP1A and WP5 Ongoing knowledge sharing and thought leadership through the deployment phase of new networks

Further development of utility-specific functionality through ongoing engagement in 3GPP – better aligned with utility use cases in mind for future LTE releases including enhanced management visibility, cyber security, profile management, E-Sim / iSim integration, high power UE & dedicated Mobile Network Codes

Forthcoming Auction by CITC, Autumn 2021

As stated in our Spectrum Outlook, CITC will award spectrum on a service and technology neutral basis:

- In the 1980 2010 / 2170 2200 MHz range, we expect interest from users and operators wishing to deploy different wireless technologies, including, IMT, Air-to-Ground (A2G) or Mobile Satellite Services with a complementary ground component (CGG).
- In the 410 430 and 450 470 MHz bands, we expect interest from users and operators to deploy specialized narrowband and broadband services to enterprises, civil users and verticals, including mission-critical services, to allow digital transformation for utility and industrial sectors in the Kingdom and enable adopting advanced industrial internet of things applications.

Global Stakeholder Bodies with Key Input to Further

Development of Private LTE Networks for Utilities -

- Utilities Technology Council representing USA and Canada
- **UTCAL who lead representation in Brazil and ITU WP5A**
- **AUTC common standards with Europe in many areas.**
- **EUTC** EUTC most closely aligned with UK Utility requirements,

cybersecurity, regulatory and corporate structure

TCCA

- The Critical Communications Association (TCCA) in particular the:
- Critical Communications Broadband Group (CCBG) and

SCADA Group

450 MHz Alliance – Standards and Regulatory Group (e.g. Band 87 & 88 development of chipsets and devices)

Third Generation Public / Private Partnership Group (3GPP) via ETSI

- especially RAN and SA1 (Iberdrola, Eon, EDF etc)

ETSI, CEPT, ECO... wide range of EU standardisation & regulation e.g. FM54

Thank You For Listening

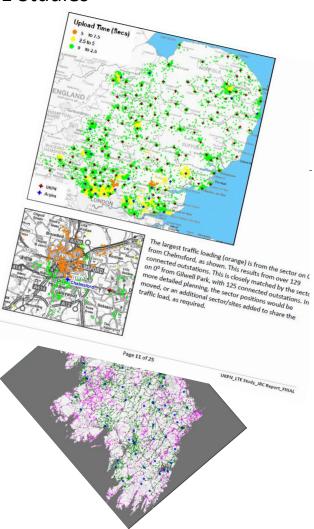
Julian Stafford

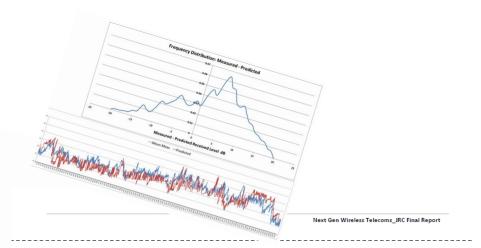
JRC

julian.stafford@jrc.co.uk

LTE studies around the UK

Bob Tyler – Operations/Programme Manager, Joint Radio Company Ltd (JRC)




Serving the Midlands, South West and Wales

Introduction

LTE Studies

WPD Next Gen Wireless Telecoms Analysis : FINAL REPORT

Executive Summary

focu

time

This report presents the outcome of the Network Innovation Allowance (NIA) funded 'Next Generation builds on previous (WPD) at Provide the Network Innovation Allowance (WPD) at Provide the Network Innovation Allowance builds on previous (WPD) at Provide the Network Innovation Allowance (WPD) at Provide the Network Innovation Allowance builds on previous (WPD) at Provide the Network Innovation Allowance (NIA) funded 'Next Generation (WPD) at Provide the Network Innovation Allowance (NIA) funded 'Next Generation (WPD) at Provide the Network Innovation Allowance (NIA) funded 'Next Generation (WPD) at Provide the Network Innovation Allowance (NIA) funded 'Next Generation (WPD) at Provide the Network Innovation Allowance (NIA) funded 'Next Generation (WPD) at Provide the Network Innovation (WPD) at P

e of defining a future advanced connectivity network. The study system Operator in the project

Althous **Project** wPD LTE trial network at Portishead, the technica closed with provides additional flexibility to accommodate alternative communications technologies, radio spectrum bands and physical parameters for both radio base stations and the terminal equipment at electricity substations. Because the maximum data rate

Radio base station trial at WPD Portishead Primary Substation.

achievable for each outstation connection depends on the precise nature of the radio path between the outstation and its associated base station, the model calculates the data rate for each path rather than relying on an average data rate based on path length.

A Time of Transformative Change

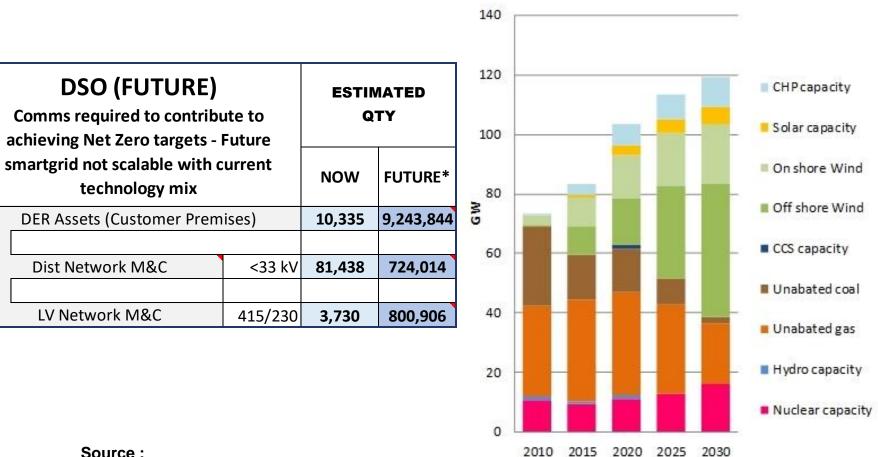
A snapshot of recent history

A snapshot of UK Electricity's recent history!

2013	Didcot Power Station ceases generation on 22 March 2013.
	Fawley Power Station closes on 31 March 2013.
2015	Ironbridge Power Station is switched off on 20 November 2015.
2016	Ferrybridge Power Station closes on 31 March 2016.
	Rugeley Power Station closes.

Source :

https://en.wikipedia.org/wiki/Timeline_of_the_UK_electricity_supply_industry

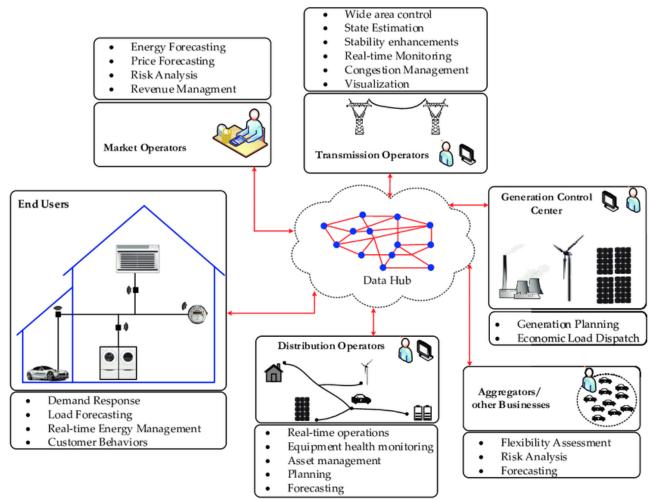


Drivers

Increased Connections

Forecast growth in asset numbers

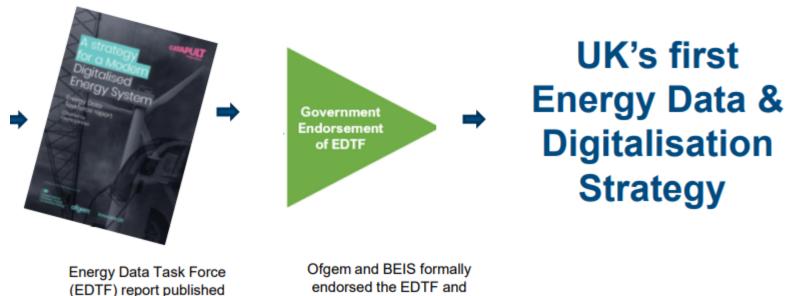
Generation installed capacity


Source :

Electricity Networks Association / JRC

Increased Data Volumes

Impact of Digitalisation


Source : BEIS Update on Energy Market Data Policy

JRC Seminar 2020

Increased Data Volumes

Impact of Digitalisation

endorsed the EDTF and deliver recommendations through the Modernising Energy Data (MED) programme

https://www.gov.uk/government/groups/modernising-energy-data

Source : Smart Systems Forum – March 2021

June 2019

Start of the story - Portishead

2018

WPD eLTE trial based on Portishead substation.

2019 LTE Study - WPD

WPD-JRC 2019

Objectives

- Demonstrate viability of pLTE over-lay on to existing sites & infrastructure;
- Develop flexible methodology for high-level designs;
- Evidence to support spectrum case.

Source :

WPD Innovation Web-site / PEA Document

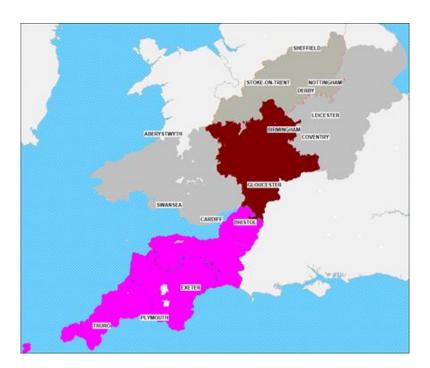
Next Generation Wireless Telecoms Analysis

vation / Projects / Next Generation Wireless Telecoms Analysi

This project ended in Oct 2019 and is now closed

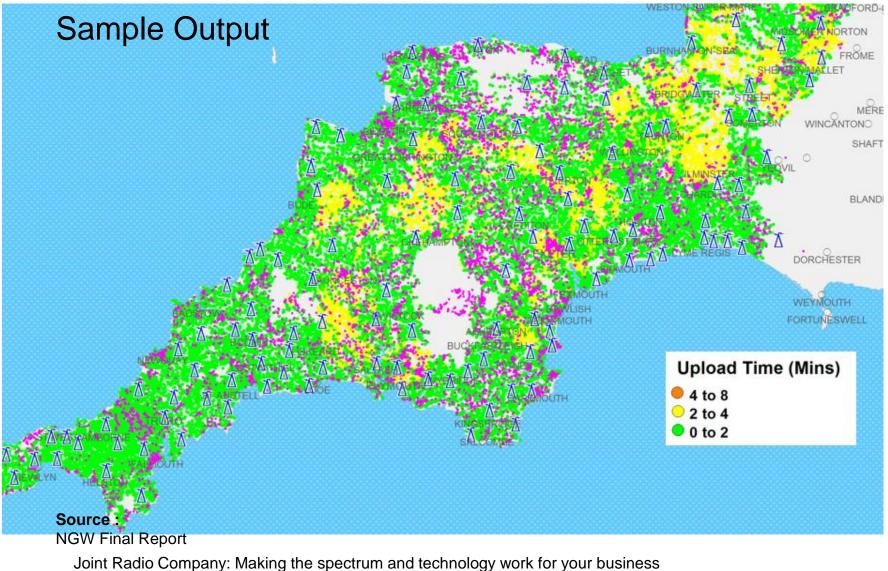
Funding mechanism	Network Innovation Allowance (NIA)
Duration	Sep 2018 - Oct 2019
Project expenditure	260k
Research area	New Technologies and Commercial Evolution
Regions	South West and West Midlands.

Dismiss 🗸



WPD-JRC 2019

Approach


- Seek to connect all WPD Distribution Sub-Stations ;
- Agree data volume & upload time assumptions ;
- Partially optimise network design to demonstrate base station density & fit on to radio sites ;
- Take backhaul upgrade into account Fibre & Radio

Source : WPD/JRC

WPD-JRC 2019

WPD-JRC 2019

Conclusions

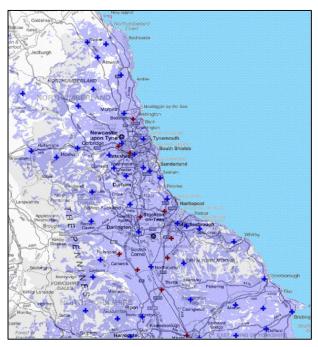
- A pLTE network meeting utility requirements will overlay well on to legacy & existing infrastructure ;
- Important aspects of the design differ substantially from a commercial mobile network, about certainty! ;
- 'Diminishing Returns' will cap Base Stations, but after detailed optimisation, for which options incl. : trading resilience v coverage, non-standard outstation antenna format/height, 'rotating' sectors, increasing BS / sector numbers in congested areas etc.
- At DNO boundary, there may be gains from using sites in another or in other ways sharing resource ;

Recommendations for Further Work

- Validate prediction models and data assumptions, particularly for challenging geographic areas;
- Impact of uplink interference & overlapping coverage ;
- Design optimisation and RF resilience;
- Test operational characteristics in a 'real-life' environment ;
- Consider single and multiple antenna configurations ;
- Assess mobile data & wide-area voice capability;
- Trial multi-vendor interworking ;
- Impact of cybersecurity measures on data volumes.

Source : NGW Final Report

2020 LTE Study - NPg



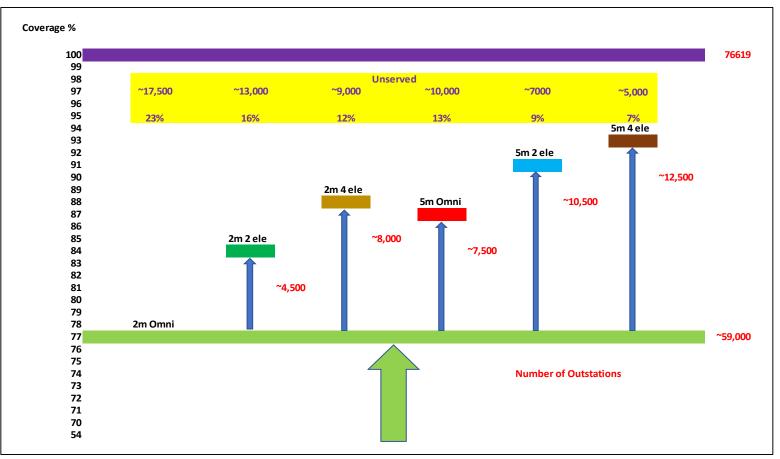
Northern Powergrid Study - 2020

Yorks & North East

Approach

- Start with (~80) hilltop sites & Omni outstations antenna at 2m above ground level.
- Add Primary Sub-Stations for ~90% outstation coverage.
- Semi-optimised network
 [104 NPg Telecoms sites

• Explore sensitivity of 104 sites to power budget and outstation antenna height – see next slide.


Source : JRC Report – July 2020

Northern Powergrid Study - 2020

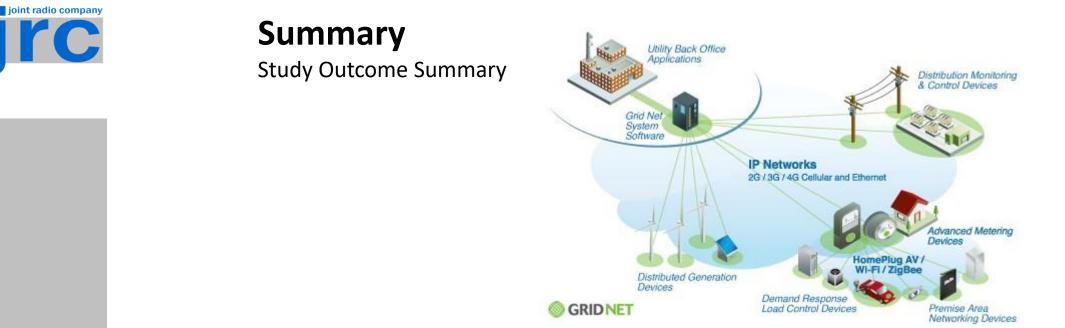
Yorks & North East

Outcomes

Source : JRC Report – July 2020

Northern Powergrid Study - 2020

Yorks & North East


Conclusions

- Sites can be largely sourced from NPg's existing asset base
- CPE costs dominant over RAN hardware costs
- Network software licensing cost model
 influenced by features and connected devices
- Wi-Fi based local coverage for local voice / data comms available subject to robust security provisions

Source : JRC Report – July 2020

Summary

- A number of desktop LTE RAN studies completed
- Utility specific requirements [Connections / Data Volumes]
- Utility specific RF design assumptions [Uplink critical]
- Increasingly backed up by Lab & Field measurements
- Now looking at Dense Urban
- Underpins spectrum requirement to provide shared
 IP/MPLS platform for critical Smart Grid applications

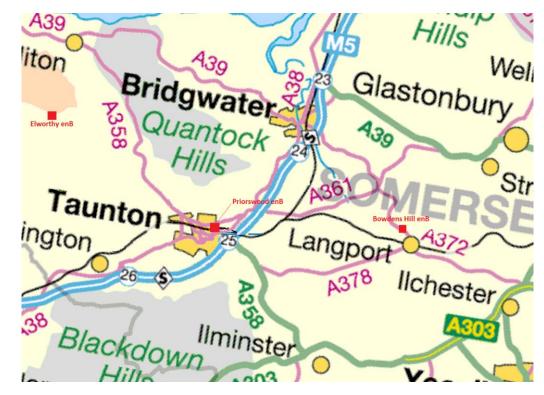
Thank You For Listening

Bob Tyler JRC

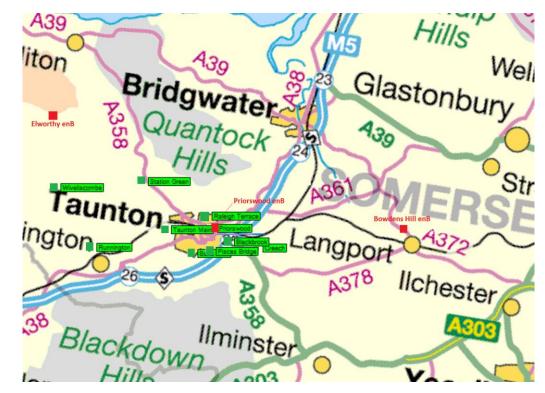
WPD LTE Trial

Phil Rigden – Telecoms Manager, WPD

Serving the Midlands, South West and Wales


Overview:

- LTE trial is in band 87 (410-430 MHz)
- Current bandwidth for the trial is 2 x 3MHz (FDD)
- Operation mode frequency division duplex (FDD)
- Installed with three enodeB base stations
 Comprising 1 x three sector site and 2 x single sector sites
- Service area of 25km centered on Taunton



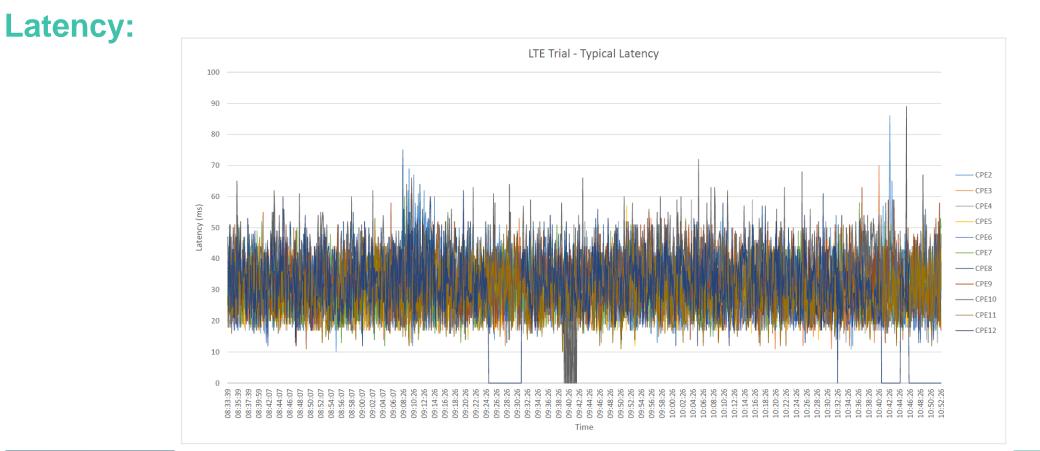
Geographical Map – enodeB Installations

Geographical Map – enodeB and CPE Installations

Field Trials:

- 10 substation locations chosen ranging from grid supply point down to distribution substations.
- Each site has been selected based on geographical location within the respective cell.
- Within each substation we have installed a CPE connected to an RTU, CCTV and a fixed VOIP handset.

- In addition we have trialled LV monitoring and mobile voice and data.
- We have also installed a solar powered RTU and CPE.


Findings:

 We have proven that LTE can provide connectivity for: SCADA Automation LV Monitoring Mobile Voice, Video and Data Fixed Voice Fixed Video (with limitations)

 Due to the observed latency of LTE system we have ascertained that it is not suitable for Teleprotection or Inter Tripping

Security and Segregation:

- Security testing of the LTE network has been carried out, further analysis of the findings are being undertaken.
- Any tenders for a private LTE network must include security testing prior to the award of any contract.
- Segregation of the utility traffic has been configured and tested on the LTE network.
- Further security testing needs to be conducted to ensure secure segregation.

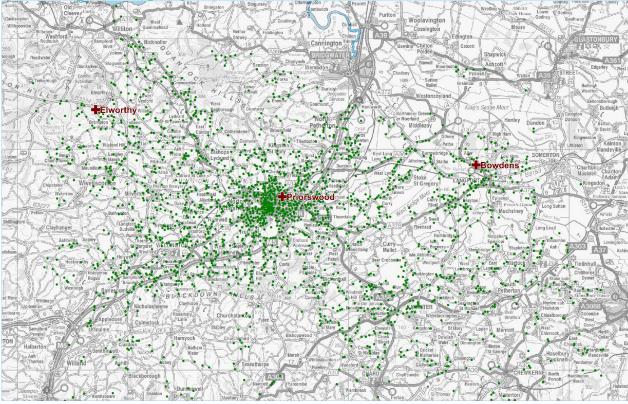
Coverage and Spectrum:

- The coverage of the network met the predicted data from the previous JRC led innovation project.
- It has been identified that an increase in gain in the uplink direction will be necessary to facilitate a balanced network.
- Resilience of the LTE network has shown that we have reached over 90% connectivity when losing a sector or base station, compared to the predictions of 60% as found in the desktop study.
- The study has confirmed that the preferred spectrum is in the 400MHz band, based on the coverage calculations of various 3GPP bands.
- Any increase in the frequency will have a major impact on the cost of deploying a private LTE network

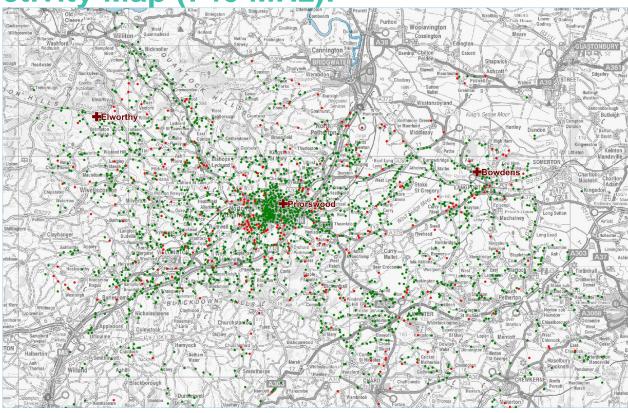
Coverage Map (415 MHz):

Coverage Map (740 MHz):

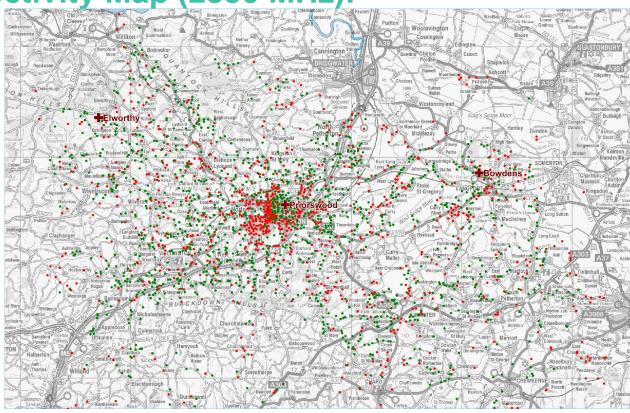
Coverage Map (2350 MHz):


Coverage Map (3850 MHz):

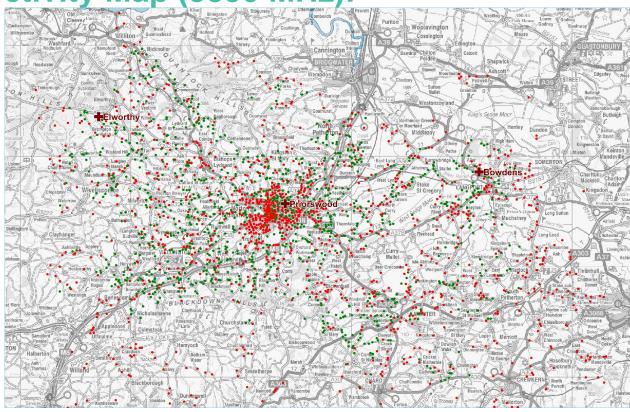
Substation Connectivity Map (415 MHz):

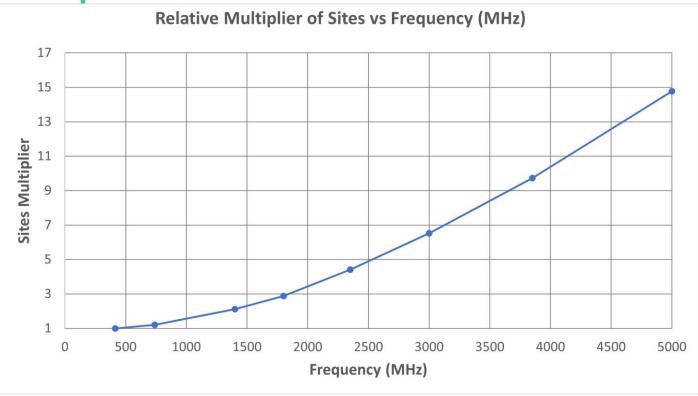

 2390 Substations Connected

Substation Connectivity Map (740 MHz):

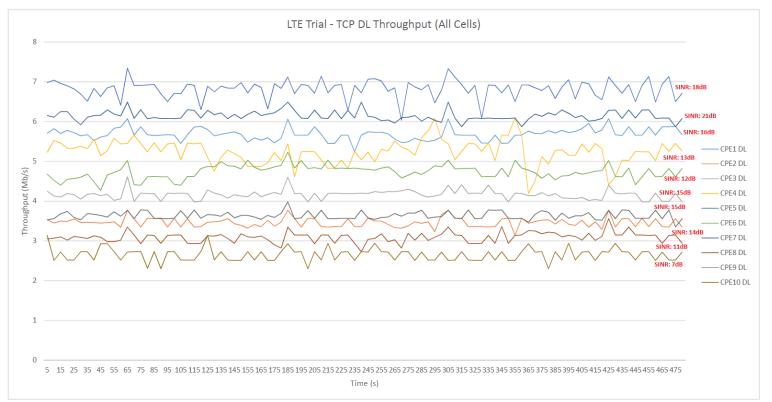

2182 of 2390
 Substations
 Connected
 (91.3%)

Substation Connectivity Map (2350 MHz):

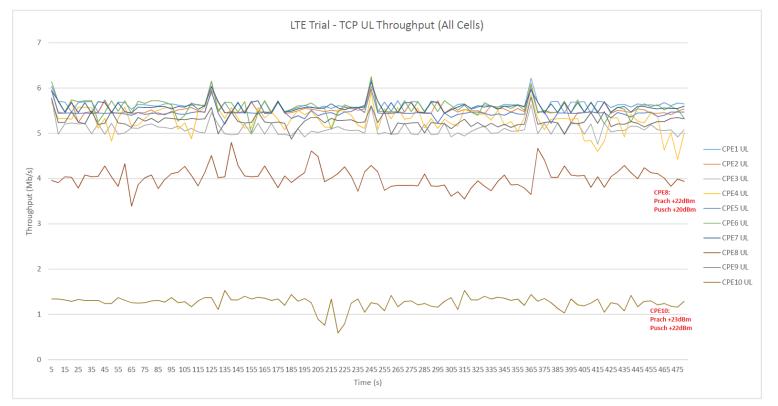

1404 of 2390
 Substations
 Connected
 (58.7%)


Substation Connectivity Map (3850 MHz):

1090 of 2390
 Substations
 Connected
 (45.6%)



Expected enodeB requirements:



Throughput: Downlink (enodeB to CPE)

Throughput: Uplink (CPE to enodeB)

Future works:

- Multi vendor inter-operability

 Core
 Open RAN
 Alternative user equipment CPE, handsets, tablets etc.
- APN segregation security
- Traffic shaping and priority
- Narrow band IOT / CAT-M
- Antenna analysis
- NOC integration
- Test equipment

Summary:

- Without any doubt we now know that a private UK LTE network is a viable solution for providing secure, reliable and resilient communications for the UK energy and utility industries.
- We need to act quickly to hit the deadlines imposed by the PSTN switch off and the 2G/3G sunset programme, in addition to meeting the UK Governments low carbon agenda.
- We need cross Government department working to ensure funding mechanisms are in place to deliver this private UK LTE network.
- What we now need is;

Confirmation if spectrum is to be allocated to the utility industry

Confirmation on which 3GPP band is going to be allocated to a private UK LTE network.

WPD LTE Trial

Thank you for listening

Serving the Midlands, South West and Wales

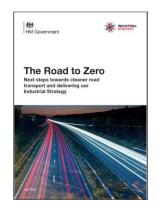
OFCOM Spectrum Update

Vaughan John – Principal Spectrum Policy Manager, OFCOM

Serving the Midlands, South West and Wales

Introduction and background

What is the Utilities Spectrum Strategy Project?


strategy in support of Government's low carbon and environmental objectives over the next 30 years

- 2018/2019 we met with electricity, gas and water companies, industry bodies, government (BEIS), Ofgem and other organisations such as ERP and ENA
- All agreed that the changes in how electricity, gas and water is supplied and consumed will require a significant increase in operational communications
- Biggest growth in operational comms is in the electricity sector for both supply and demand

making communications w

for everyone

This is a multi-phase project occurring over several years

Project is set up over 3 phases with decision points after Phase 1 and Phase 2

Phase 2: policy

Starting in 2019, we modelled the data requirements of the utilities sector over the next 20 – 30 years and how that would translate to spectrum demand

Options to meet the requirements identified in Phase 1, taking into account resilience, coverage, security, costs, data and digitalisation and System Restoration

Phase 3: consultation

We would consult on any spectrum management proposals in line with our consultation principles

Policy options

PROMOTING CHOICE • SECURING STANDARDS • PREVENTING HARM

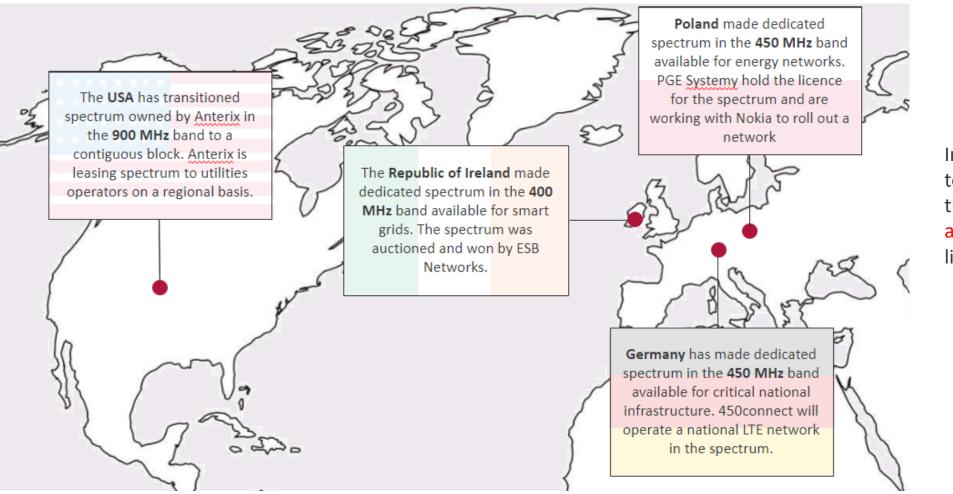
Criteria that the Utility Sector state their communications need to meet

From EUTC:

- High (comms) network availability and reliability
- Resilient with mains power autonomy for up to 72 hours for critical elements
- Security against physical disruption and electronic intrusion as set by national cybersecurity requirements
- Connectivity to all network assets, including those in remote or sparsely populated areas
- Appropriate bandwidth, varying from as little as 600 bps to 2-10 Mbps (feeding into fibre-based or microwave core networks)
- Low latency
- Long-lasting operation and support, as utility assets are generally expected to last 15-50 years

Also

• LTE is the technology of choice



Industry has highlighted a number of risks with relying on commercial networks

- MNO Coverage:
 - 4G coverage from at least one operator is 91% of the UK (Connected Nations Report, 2020)
 - Shared Rural Network: "initial commitment for each MNO to reach 88% coverage by 2024" (lowest is 79%, highest is 85%)
 - ESN extended area service: "coverage in the most rural and remote parts of Great Britain"
- MNO Resilience:
 - Recognised as a key issue by Government and Ofcom. Work underway to enhance resilience of public telecommunication networks
- Cybersecurity:
 - Telecommunication (Security) Bill
- Satellite costs & latency:
 - New satellite services with reduced costs and latency (OneWeb, SpaceX etc)

Several countries have made spectrum available to utilities

In Europe, these allocations to utilities are in spectrum that was unused or became available due to existing licences ending

Potential LTE bands in the UK are heavily utilised

Band	Uplink (MHz)	Downlink (MHz)	Comment	
28	703 - 748	758 - 803	2 x 3 MHz available in 700 MHz band, but high risk of harmful interference from 700 MHz mobile use (SDL) >9km separation needed	Non-LTE spectrum options also have enduring use and incumbents e.g. 380/390 MHz
31	452.5 - 457.5	462.5 – 467.5	BR use: ~15k licensees & 28k licences (incl Light Licences) PMSE: ~14k freq assignments Emergency Services: 110 Licensees & 135 assignments	
72	451 - 456	461 - 466		
73	450 - 455	460 - 465		
87	410 - 415	420 - 425	RAF Fylingdales needs >230 km separation from LTE (ECC Report 240) Arqiva Smart Meters (Scotland and Northern England)	
88	412 - 417	422 - 427		
40	2300 – 2400 (TDD)		2300-2350 MHz used by MOD and HO 2350-2390 MHz awarded	
5G (C-Band)	TDD 3300 - 4200 (TDD)		Limited transmit power available	

Each option raises a different challenge to resolve

Commercial	Can issues regarding commercial delivery of communications (e.g. MNO or satellite) be sufficiently mitigated?
Dedicated spectrum	There is no easily available spectrum so what action would need to be taken?
Shared spectrum	Potential for Utilities to share spectrum with other – which we encourage as part of our spectrum management strategy?

Working with BEIS and Ofgem

Collaboration with Government and Ofgem

NIC: "Regulators' duties need to be coherent, covering price, quality, resilience and environment. Collaborate with other regulators...to avoid contradictory regulation and promote efficient outcomes for consumers on cross-sectoral issues."

- We are working closely with colleagues in BEIS and Ofgem to bring together sectoral, regulatory and policy expertise ٠
- Objective is to support a future communications strategy that ۰
 - Can achieve Government's environmental policy objectives
 - Facilitates digitalisation of the energy network
 - Promotes efficient outcomes for consumers
- In addition we are engaging with: ٠
 - UK Regulators Network
 - NGESO (Bridging the Gap to Net Zero)
 - ENA (Strategic Telecommunications Group) & industry

Department for Business, Energy


& Industrial Strategy

Thank you

Ofcom, June 2021 Vaughan John

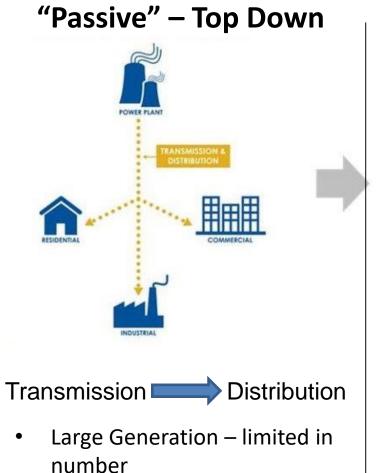
UK LTE – Design, Build & Operation

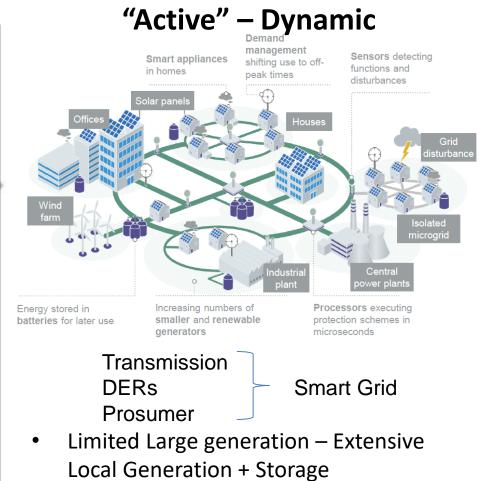
Dr Peter Couch – Chief Executive Officer, Joint Radio Company Ltd (JRC)

Serving the Midlands, South West and Wales

UK Private LTE for Energy Utilities Design, Build and Operation a Perspective

Joint Radio Company: Making the spectrum and technology work for your business www.JRC.co.uk

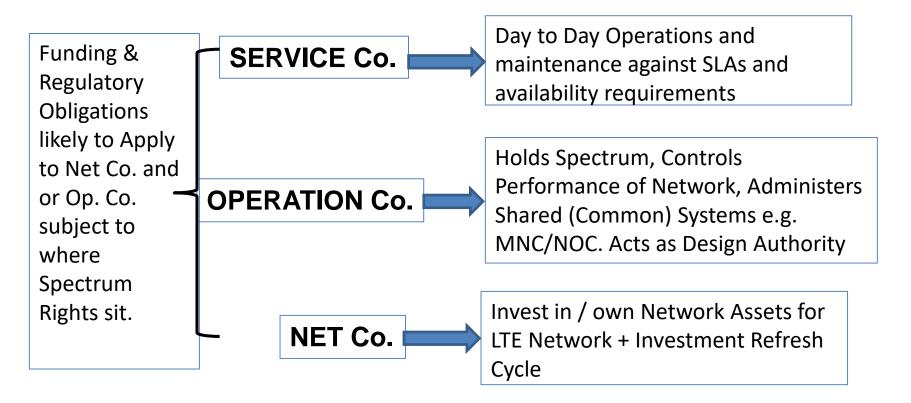



- Changing Context
- Network Options to explore
- DisRestart use case

Changing Context

Whole System Perspective

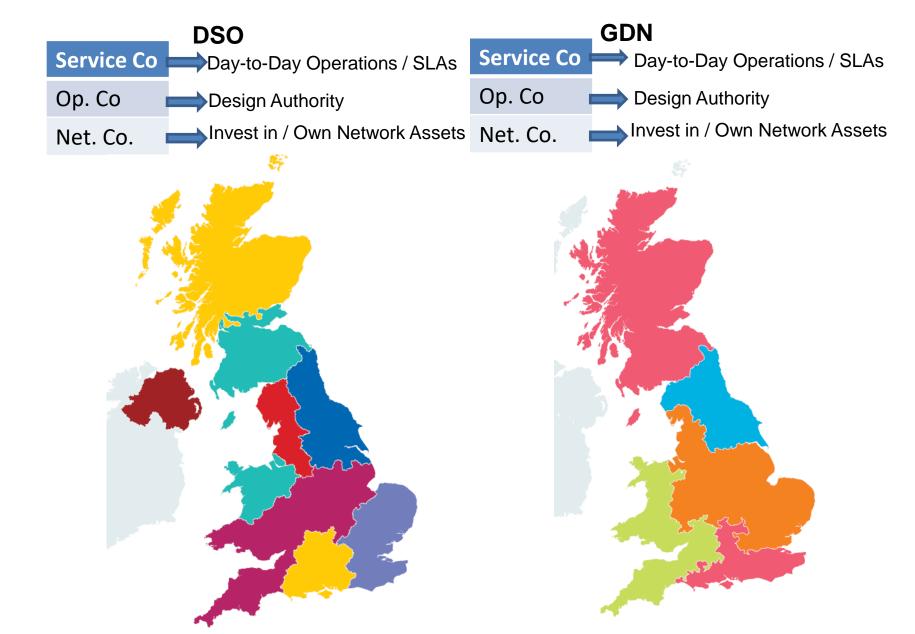
 Focus on balancing demand and availability through the the transition to embedded generation and alternative gases



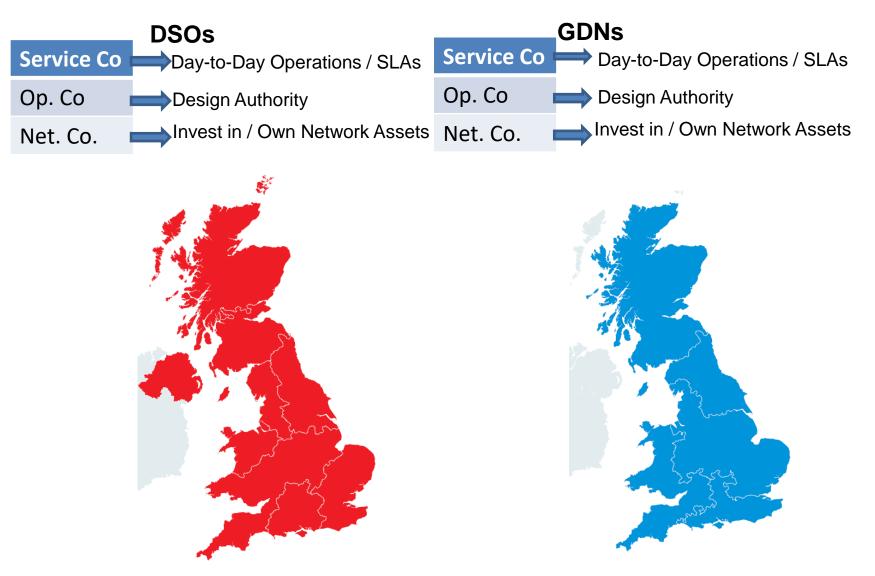
Enabling a 'Smart Grid' Solution

Building Block Approach

Regulatory Context

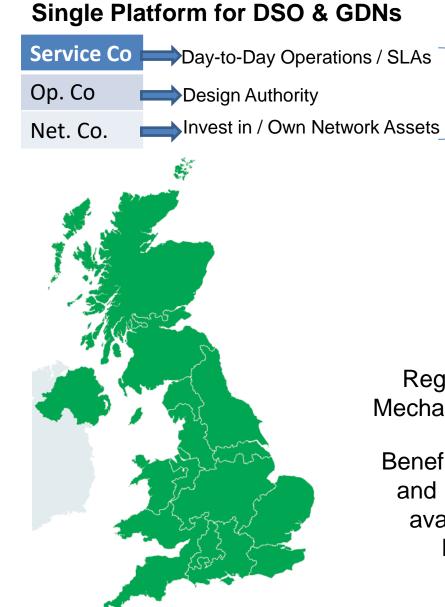

Industry Response

"Active Local Networks" – Today's Approach


Stand Alone DSO / GDN Approach – Local System Operator Model

"Active Local Networks" – Discrete DNO / GDN Solutions

Facilitates 'Smart Grid System Operation at the Sector Level – Electricity / Gas

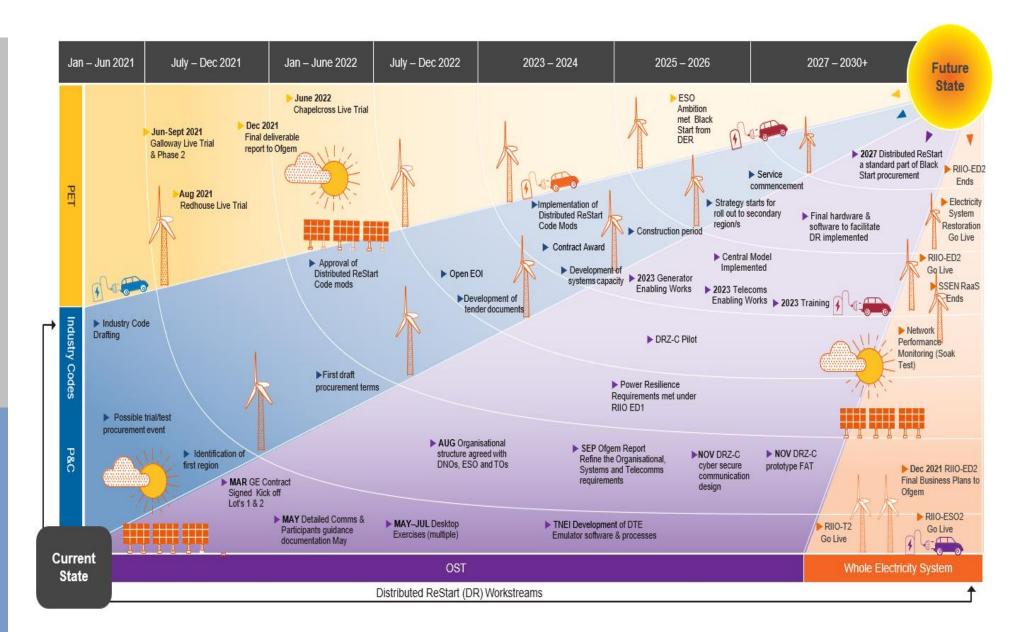


Regulatory funding arrangements could enable discrete operational outcomes. However, capability and cost effectiveness is unlikely to be optimised

"Active Local Networks" – Single Solution for ALL ENOs

Whole System Approach – Common OT Platform for Gas & Electricity

System Operator tasked with establishing system capability, owns investment and Operational requirement. Administers Spectrum Access and System Design


Regulatory and Funding Mechanisms to be Addressed

Benefits from Scale Economies and Network Efficiencies not available in the alternative Fragmented options

Distributed Restart Application

Enhanced OT Capability enables future system resilience

- Changing Context
- Network Options Explored
- DisRestart use case

Thank You For Listening

Dr Peter Couch

JRC

Joint Radio Company: Making the spectrum and technology work for your business www.JRC.co.uk

Q&A Session

Julian Stafford – Chief Technology Officer, JRC Steve Pike – Network Infrastructure Manager, WPD Vaughan John – Principal Spectrum Policy Manager, OFCOM

Serving the Midlands, South West and Wales

Serving the Midlands, South West and Wales

Thank you

If you have any further questions please email wpdlteseminar@westernpower.co.uk

