

NATIONAL GRID ELECTRICITY DISTRIBUTION

FLEXIBLE OPERATION OF WATER NETWORKS ENABLING RESPONSE SERVICES (FLOWERS)

FLOWERS D3-2 CASE STUDY SELECTION

VERSION 2 – 07/10/2022 (D. PENFOLD)

1. TABLE OF CONTENTS

2.	Projec	ot Overview					
3.	Docur	nent Purpose3					
4.	Execu	tive Summary					
5.	Problem Statement4						
6.	Key Contacts – Internal and External4						
7	Select	ion Criteria5					
	7.1	Must Haves - Generic5					
	7.2	Must Haves: Wastewater - Sewage Treatment (WW ST)					
	7.3	Must Haves: Wastewater - Mains Distribution (DW WT)6					
	7.4	Must Haves: Drinking Water – Water Treatment (DW WT)6					
	7.5	Must Haves: Drinking Water – Water Distribution (DW WD)6					
	7.6	Nice to Have					
	7.7	Locational Criteria6					
	7.8	SWW Site Selection Criteria Ranking					
8	South	west Water Shortlist Case Study Sites7					
	8.1	Wastewater – Sewage Treatment7					
	8.2	Wastewater – Mains Distribution					
	8.3	Drinking Water – Water Treatment					
	8.4	Drinking Water – Water Distribution9					

Document Control	Name	Date
Authored & revised by:	David Penfold	07/10/2022
Reviewed by:	Gary Swandells	21/10/2022
	Jade Kennerley	
Approved by:	Nick Devine	21/10/2022

Revision History						
Date	Issue	Status				
31/08/2022	0.1	DRAFT				
03/10/2022	1	DRAFT				
21/10/2022	2	FINAL				

2. PROJECT OVERVIEW

The FLOWERS project will analyse the potential ability of South West Water's (SWW) network to embed energy flexibility capacity in the time difference (latency) between when drinking water and wastewater are pumped and stored, and when it is used by the system. It will explore methods of delivering latency flexibility and analyse the feasibility of implementing it on SWW's systems. It will define the regulatory compliance and commercial viability requirements for the creation of a latency flexibility product which can be embedded within Western Power Distribution's (WPD) electricity network control rooms. If appropriate, a recommendations document will be produced identifying the next steps for the development of latency flexibility capacity in ED2.

3. DOCUMENT PURPOSE

This document is one of several that will be published about the FLOWERS Project, which is primarily a desktop-based analysis that is designed to establish the efficacy and scale of potential innovations discussed in the previous section. The project will require the engagement of both water and electricity regulators to determine whether benefits will be permitted to go forward to BaU.

This specific document is intended to focus on the methodology used, and the outcome of, identifying SWW sites that could be used for desk top case studies in relation to implementing the initiatives identified as part of LFA 1.

The case studies will be used to determine the implementability, costs, energy capacity released, how long the capacity could be released and a benefit analysis for both SWW and WPD.

4. EXECUTIVE SUMMARY

The sites selected need to consider that most of the identified initiatives are based around pumping operations. Therefore, the sites selected need to be representative of the different types of operations that could implement the identified initiatives.

The criteria set out several "Must Haves" and "Nice to Haves" along with ensuring a spread of site types from Drinking Water Treatment (DW WT), Drinking Water Distribution (DW WD), Waste Water Sewage Treatment (WW ST) and Wastewater Distribution (WW MD) with at least one of each type needing to be identified.

For WW ST sites, and the understanding that energy demand is predominantly driven by rain events, the sites selected will potentially need to encompass sites that see on average more rainfall and sites that see less rainfall.

Table 4-1 identifies the sites proposed for the desktop case study.

TYPE OF SITE	SITES
Wastewater - Sewage Treatment	Ashford – Barnstaple & Hayle (has AD Plant)
Wastewater - Mains Distribution	Pottington & Porthgwidden
Drinking Water - Water Treatment	Pynes
Drinking Water - Water Distribution	Dunsford Hill

Table 4-1 Sites Proposed

5. PROBLEM STATEMENT

The specific problem, that this report is intending to resolve, is the development of a methodology to identify which sites would be representative of the SWW estate where the identified initiatives could be implemented.

As seen in table 5-7 below most of the initiatives are based on pumping operations therefore ideally the sites identified could implement these. The sites identified would also need to allow the project to identify potential costs and benefits to both SWW and WPD.

LOW HANGING FRUIT		DRINKING WATER	2	WASTE	ENERCY	
Initiative	WATER TREATMENT (DW WT)	WATER DISTRIBUTION (DW WD)	POWER GENERATION (DW PG)	WASTE MAINS DISTRIBUTION (WW MD)	WASTE SEWAGE TREATMENT (WW ST)	DEMAND REDUCTION CATEGORY
DWS & WWS - turndown/switch off of pumps	YES	YES	N/A	YES	YES	PUMPING
DWS & WWS - Review all set points are as needed for current demand and operating as expected	YES	YES	N/A	YES	YES	PUMPING
DWS & WWS - Produce pumping profile based on a model that creates a schedule for control room.	YES	YES	N/A	YES	YES	PUMPING
DWS - Drinking water reservoir pre-filling	YES	N/A	N/A	N/A	N/A	PUMPING
WWS - Re-Profiling levels of storage	N/A	N/A	N/A	N/A	YES	PUMPING

MORE CHALLENGING		DRINKING WATER	2	WASTE	ENERGY	
Initiative	WATER TREATMENT (DW WT)	WATER DISTRIBUTION (DW WD)	POWER GENERATION (DW PG)	WASTE MAINS DISTRIBUTION (WW MD)	WASTE SEWAGE TREATMENT (WW ST)	DEMAND REDUCTION CATEGORY
WWS & DWS - Pump size increase and/or mismatch check verses volume requirements	YES	YES	N/A	YES	YES	PUMPING
WWS - Changing usage of infiltration pumping based on forecasting	N/A	N/A	YES	N/A	YES	PUMPING

WORTHWHILE WITH FOCUS		DRINKING WATE	R	WASTE	ENERCY	
Initiative	WATER TREATMENT (DW WT)	WATER DISTRIBUTION (DW WD)	POWER GENERATION (DW PG)	WASTE MAINS DISTRIBUTION (WW MD)	WASTE SEWAGE TREATMENT (WW ST)	DEMAND REDUCTION CATEGORY
DWS - Pump Variable Speed Drives	YES	YES	N/A	N/A	N/A	PUMPING
WWS - Sea water infiltration pumping.	N/A	N/A	N/A	N/A	YES	PUMPING
WWS - Storm Tanks usage to hold off treatment works	N/A	N/A	N/A	N/A	YES	PUMPING
ENERGY MANAGEMENT EFFICIENCY	DRINKING WATER			WASTE	ENERGY	
Initiative	WATER TREATMENT (DW WT)	WATER DISTRIBUTION (DW WD)	POWER GENERATION (DW PG)	WASTE MAINS DISTRIBUTION (WW MD)	WASTE SEWAGE TREATMENT (WW ST)	DEMAND REDUCTION CATEGORY
WWS & DWS Reducing energy usage with refurbished pumps	YES	YES	N/A	YES	YES	PUMPING

Table 5-1 Pumping Initiatives

6. Key Contacts – Internal and External

The key personnel interacted throughout the project so far are as follows:

Name	Position	Company						
Project Team (We SGC & South Wes	Project Team (Western Power Distribution WPD, Smart Grid Consultancy SGC & South West Water SWW)							
Angus Berry	Head of Energy	SWW						
James Haigh	Energy and Generation Engineer	SWW						
Jade Kennerley	Energy and Carbon Technician	SWW						
David Penfold	Project Manager	SGC						
Gary Swandells	Director	SGC						
George Major	Data Analyst	SGC						
Emma Burns	Consultant	SGC						
Nick Devine	Weston Power Distribution Innovation Engineer	WPD						
Stuart Fowler	Weston Power Distribution Innovation Engineer	WPD						
Drinking Water Se	ervices (DWS) Specialists							
Gary Furse	Resources & Production Operations Manager	SWW						
Ben Morrell	Central Process Control Team Manager (DW R&P)	SWW						
Richard Adams	Head of SWW DWS Networks	SWW						
Tom Martin	DWS Network Area Manager	SWW						
Haden Squire		SWW						
Wastewater Services (WWS) Specialists								
David Helicon	Principal Scientist (WW R&T)	SWW						
Nick Gardner	Scientist (WW R&T)	SWW						
Paul Lakeman	Regional Maintenance Manager (WW R&T)	SWW						
Daniel Woolf	WWS Recovery & Treatment Area Manager	SWW						

7 SELECTION CRITERIA

As previously discussed, the selection criteria set out several "Must Have" and "Nice to Have" along with ensuring a spread of site types from Drinking Water Treatment (DW WT), Drinking Water Distribution (DW WD), Waste Water Sewage Treatment (WW ST) and Wastewater Distribution (WW MD) with at least one of each type needing to be identified.

These must haves were split into 2 sets

- 1. Generic All sites need to have in place
- 2. By Site Grouping Specific to each type of site

7.1 Must Haves - Generic

1	Po in a Constraint	1	Historia Energy (
An	y site selected must have the following in place already		

 Be in a Constraint 	V Holf Hourly Main Motor	 Historic Energy Data
Management Zone		Available (Min 1 Year)

7.2 Must Haves: Wastewater - Sewage Treatment (WW ST)

Any WW ST site must have the following in place already

~	Remote Pumping Control	~	Pumping Set Points Management System	~	Water flow measurement	~	Aeration control system	

7.3 Must Haves: Wastewater - Mains Distribution (DW WT)

Any WW MD site must have the following in place already

	✓ Remote Pumping Control	~	Water flow measurement	
7	7.4 Must Haves: Drinkin Any WW MD site must hav	ig Water – Water Treatmen t e the following in place alrea	t (DV dy	V WT)
	✓ Remote Pumping Control	 ✓ Pumping Set Points Management System 	✓	Water flow measurement

7.5 Must Haves: Drinking Water – Water Distribution (DW WD)

Any WW MD site must have the following in place already

	✓ Remote Pumping Control	 ✓ Pumping Set Points Management System 	✓ Water flow measurement
--	--------------------------	--	--------------------------

7.6 Nice to Have

The selection criteria then included several "Nice to Have" with the understanding that if these were not in place this would not preclude the site from being selected. The below are the nice to haves that were identified as being important for the case study selection.

\Rightarrow	Solar PV Installed	\Rightarrow Solar PV Planned	\Rightarrow Existing Submetering
\Rightarrow	Onsite CHP	\Rightarrow Onsite Hydro	\Rightarrow Ammonia Treatment

7.7 Locational Criteria

The case study criteria also included needing to identify sites that had the following differences as these were deemed as being a potential impact on energy demand

\Rightarrow 1	Urban	\Rightarrow	Rural	\Rightarrow	Coastal
\Rightarrow	Seasonal Population	\Rightarrow	Topographically Hilly	\Rightarrow	Topographically Flat
(Growth		Catchment		Catchment

7.8 SWW Site Selection Criteria Ranking

The next step in the site selection process was to identify all SWW sites and determine which sites fulfilled the selection criteria in priority order as below. Sites were then ranked by the level of compliance with the highest compliance sites being added to a case study shortlist.

Priority 1 – Must Haves Generic Priority 2 – Must Haves By Site Grouping

Priority 3 – Nice to Haves

The shortlisted sites were then visited and discussed with the local Area Managers to conclude if the sites would be suitable for the case study, then any follow up physical trial.

8 SOUTHWEST WATER SHORTLIST CASE STUDY SITES

This section details the shortlisted sites which have more than average maximum demand of the specific site category. The yellow highlighted sites are within current constraint management zones and the red highlighted sites are the proposed desktop case study sites.

8.1 Wastewater – Sewage Treatment

The following sites have above the average Max Demand of 186kW for this type of sites.

SITE NAME	POSTCODE	Current Max Deman d (kW)	Max Flex (kW)	IN A CMZ
HAYLE_STW_HAYLE	TR27 6LA	1,735	677	Constraint Management Zone Facing
ASHFORD_STW_BARNSTAPLE	EX31 4BR	795	310	Constraint Management Zone Facing
CAMBORNE_STW_CAMBORNE	TR14 0BN	505	197	Constraint Management Zone Facing
LORDS MEADOW_STW_CREDITON	EX17 1ER	333	130	Constraint Management Zone Facing
HELEBRIDGE_STW_BUDE	EX23 0JA	259	101	Constraint Management Zone Facing
ILFRACOMBE_STW_ILFRACOMBE	EX34 9QG	188	73	Constraint Management Zone Facing
CENTRAL_STW_PLYMOUTH	PL4 0PX	2,661	1,038	
COUNTESS WEAR_STW_EXETER	EX2 7RZ	1,915	747	
BROKENBURY QUARRY_STW_TORBAY	TQ5 0LL	1,753	684	
NEWQUAY_STW_NEWQUAY	TR8 4QD	830	324	
BUCKLAND_STW_NEWTON ABBOT	TQ12 4SA	774	302	
CAMELS HEAD_STW_PLYMOUTH	PL2 2JH	585	228	
FALMOUTH_STW_FALMOUTH	TR11 4NJ	578	225	
MARSH MILLS_STW_PLYMPTON	PL7 1YB	501	195	
PAR_SIW_SI AUSIELL	PL24 2SQ	472	184	
	TR12SU	455	1/8	
		431	168	
		300	100	
DARTMOUTH STW DARTMOUTH		203	11/	
MAER LANE STW EXMOUTH	EX8 5DB	284	111	

SITE NAME	POSTCODE	Current Max Deman d (kW)	Max Flex (kW)	IN A CMZ
NANSTALLON_STW_BODMIN	PL31 2QX	262	102	
TOTNES_STW_TOTNES	TQ9 6LS	216	84	
RADFORD_STW_PLYMOUTH	PL9 9DF	212	83	
HILL BARTON_STW_OKEHAMPTON	EX20 2RT	207	81	

8.2 Wastewater – Mains Distribution

The following sites have above the average Max Demand of 171kW for this type of site.

SITE NAME	POSTCODE	Current Max Demand (kW)	Max Flex (kW)	IN A CMZ
CHYANDOUR_SPST_PENZANCE	TR18 2NG	851	766	Constraint Management Zone Facing
PORTHGWIDDEN_SPST_ST IVES	TR26 1PP	612	551	Constraint Management Zone Facing
POTTINGTON ESTUARY_SPST_BARNSTAPLE	EX31 1NP	511	460	Constraint Management Zone Facing
NORTHAM FSCN_SPST_WESTWARD HO	EX39 1TW	460	414	Constraint Management Zone Facing
BRIDGE_SPST_PORTREATH	TR16 4NF	435	391	Constraint Management Zone Facing
CASTLE_SPST_BUDE	EX23 8LG	251	226	Constraint Management Zone Facing
MAER ROAD_SPST_EXMOUTH	EX8 2DB	632	569	
ILSHAM VALLEY_SPS_TORQUAY	TQ1 2PN	610	549	
BIDEFORD FSCN_SPST_BIDEFORD	EX39 2QN	603	543	
NEWHAM ROAD_SPST_TRURO	TR1 2DP	512	460	
MAYORS AVENUE_SPST_DARTMOUTH	TQ6 9NG	361	325	
FLEET WALK_SPS_TORQUAY	TQ2 5SR	288	260	
	TQ5 8AR	277	249	
		276	248	
GANNEL SPS_EXETER		230	170	
	TR7 200	199	164	
CLENNON VALLEY SPS PAIGNTON	TQ4.5.IR	179	161	
SALTASH ROAD SPS PLYMOUTH	PL2 1QT	176	159	
TOWAN HEAD_SPS_NEWQUAY	TR7 1HS	172	155	
THE HAM_SPST_SIDMOUTH	EX10 8BG	162	146	

8.3 Drinking Water – Water Treatment

The following sites have above the average Max Demand of 183kW for this type of site.

SITE NAME	POSTCODE	Current Max Demand (kW)	Max Flex (kW)	IN A CMZ
PYNES_WTW_EXETER	EX5 5EQ	1,549	465	Constraint Management Zone Facing
DRIFT_WTW_PENZANCE	TR19 6AA	341	102	Constraint Management Zone Facing
PYNES_PRI_BRAMPFORD SPEKE	EX5 5DY	245	74	Constraint Management Zone Facing
RESTORMEL_WTW_LOSTWITHIEL	PL22 0EE	3,752	1,126	
LITTLEHEMPSTON_WTW_LITTLEHEMPST ON	TQ9 6LZ	2,007	602	
GUNNISLAKE_PRI_GUNNISLAKE	PL19 8JG	1,621	486	
CROWNHILL_WTW_PLYMOUTH	PL6 5DA	1,534	460	
ROADFORD DAM_RWPS_BROADWOODWIDGER	PL16 0SW	1,289	387	
LOPWELL_TPS_TAMERTON FOLIOT	PL5 4NH	846	254	
DOTTON_WTW_NEWTON POPPLEFORD	EX10 0JY	729	219	
ALLERS_WTW_TIVERTON	EX16 7QT	714	214	
STITHIANS_WTW_STITHIANS	TR3 7AW	561	168	
WIMBLEBALL_IRES_BAMPTON	TA22 9NS	523	157	
MAYFLOWER_WTW_PLYMOUTH	PL6 7RS	518	156	
NORTHCOMBE_WTW_OKEHAMPTON	EX20 4LL	464	139	
MELDON DAM_RWPS_MELDON	EX20 4LU	379	114	
ST CLEER_WTW_LISKEARD	PL14 6EQ	360	108	
BOLHAM_PRI_TIVERTON	EX16 7RL	304	91	
KENNAL VALE INTAKE_TWPS_KENNAL VALE	TR3 7HL	286	86	
TAMAR LAKES_WTW_KILKHAMPTON	EX22 7LB	242	72	
TOTTIFORD_WTW_BOVEY TRACEY	TQ13 9PD	232	70	

8.4 Drinking Water – Water Distribution The following sites have above the average Max Demand of 145kW for this type of site.

SITE NAME	POSTCODE	Current Max Demand (kW)	Max Flex (kW)	IN A CMZ
DUNSFORD HILL_WPS_EXETER	EX2 9PJ	438	394	Constraint Management Zone Facing
PILTON_WPS_BARNSTAPLE	EX31 1QL	210	189	Constraint Management Zone Facing
BLAKEWELL PUMP_WPS_BARNSTAPLE	EX31 4ET	130	117	Constraint Management Zone Facing
WILLAND_WPS_CULLOMPTON	EX15 2QH	457	412	
LANGRIDGE CROSS_WPS_TOTNES	TQ9 7PP	263	237	
SIDFORD_WPS_SIDMOUTH	EX10 9PL	133	120	