

Assessment of Climate Change Event Likelihood Embedded in Risk Assessment Targeting Electricity Distribution (ACCELERATED)

Webinar 28 March 2023

Agenda

- 1. Project background
- 2. Historic weather impact assessment
- 3. Climate change impact analysis on network performance and visualisation of future risks
- 4. Climate change impact on embedded generation and demand
- 5. Climate Change impact assessment procedure
- 6. Q&A

Project Background

ACCELERATED – Project Information

ACCELERATED is about understanding and visualising the impact of historic weather and climate change on WPD network performance.

Delivery timeframe: January 2022 – February 2023

Funding mechanism: Network Innovation Allowance Total budget: £244,511.30

In partnership with:

02

Historic weather impact assessment

Historic weather records/assets used in the analysis

Weather impact	NaFIRS Cause Category	Weather Data		Equipment	
Wind	Tree Related or Wind & Gale	Met Office UKv Forecast Model		OHL mains and service	
		(daily max 10m wind gusts)		Switchgear and	
Rain	Rain	HadUK-Grid		Protection	
		(daily accumulated rainfall)		Tropolormore	
Lightning	Lightning	No data available		Transformers	
Flooding	Flooding	HadUK-Grid		Underground mains	
Ū		(daily accumulated rainfall)	and Service		
High	Solar Heat	HadUK-Grid		Other/Misc	
Temperature		(daily max temperature)			
Low Temperature	lce	HadUK-Grid			
	Snow, Sleet & Blizzard	(daily min temperature)	Dates	s covered: mainly 2005 - 2020	
	Freezing Fog and Frost				

Lightning Related Faults – Heat Maps

Highest number of faults recorded is 169

The highest value of CML is 2,235,042 (156,613 average)

Analysis of Historic Wind Faults

Fragility curves (black lines) are fitted using a linear regression to black dots (median faults per wind gust integer)

- Predicts the number of faults expected to be exceeded on 50% of occasions that a certain wind gust occurs
- Can be used to make predictions if the maximum gust windspeed of an approaching storm is known
- Large spread in the relationship potentially related to other factors
 - Wet soil
 - Wind direction
 - Time of year
- Similar relationships can be made for CML

Number of Faults vs. Maximum Wind Gusts in Windstorm

Asset Contributions to Faults/CML during Windstorms

Climate change impact analysis and visualisation of future risks

Methodology for Future Projections of Climate, Faults and CMLs

UKCP18, Fragility Curves and Impact Projections

Applying UKCP18 Projections to Fragility Curves: Wind

CML Projections

Historic Wind Related Faults

	Tree Related Wind Faults	Wind and Gale Faults (exc. Windborne materials)
Number of faults	244	283
CMLs	13,406,839	9,828,709

GIS tool for visualising and exploring the data

15

	Y Minimum temperature	
--	-----------------------	--

•

Historic weather and future climate analysis - conclusion

Historic Faults are mainly wind related, followed by lightning

12 Largest single events for CML include 5 windstorms, 2 rain/flood events, 3 cold snaps, and 2 heat waves

UKCP18 projects that intense windstorms are projected to increase in the future

Median CML are set to increase by 35% (2070) in South Wales (for example); however, there is large uncertainty associated

UKCP18 projects a large increase in maximum temperatures during warm spells

Median CML for a 10-year event are set to increase by 50% (2030s) and 150% (2070s) compared to climate in 1990s

04

Climate change impact on embedded generation and demand

Approach overview

- Earlier WPs looked at historical trends and future climate projections (impact: faults on the network)
- This WP considered the impact of changes on demand and embedded generation output (impact: diurnal profiles)
 - Temperature
 - Wind
 - Solar
- Coordinated with NGED forecasting team to complement existing processes

Process

- Python analysis of historical datalogger measurements (demand and generation)
 - Relationships between historical primary substation demand / distributed generation (DG) output and weather observations
 - Half-hourly (HH) profiles derived for representative days
- Excel analysis of adjustments to representative day profiles accounting for climate projections

Analysis steps

- Long-term historical relationships (Python analysis)
 - Daily max and 11:00hrs demand/DG
 - Daily max temperature, wind speed and solar radiation
- Adjusted profiles (Excel analysis)
 - HH adjustment factors based on S-curve (sigmoid) relationships
 - Applied adjustments to historical unadjusted profiles / average profiles

Alignment with DFES

- Primary substations categorised as rural, urban or morning peak
- Definition of seasons consistent with DFES (EREC P27/2):
 - Winter: Jan, Feb and Dec
 - Intermediate Cool: Mar, Apr and Nov
 - Intermediate Warm: May, Sep and Oct
 - Summer: Jun, Jul and Aug
- Peak demand in each (minimum coincident generation)
- Summer peak generation (minimum coincident demand)

Conclusions

- Approach complements DFES (adjustments applied to underlying historical or average profiles)
- Historical location-specific profiles can differ from DFES average
- Some long-term relationships have weak correlations, but S-curves limit adjustments to within reasonable bounds

Temperature increase: 1.5 - 2.6° C

Max demand reduction: 0%-9.6% (winter: 0.6-3.2%)

05

Climate Change impact assessment procedure

Procedure overview

Procedure document prepared to:

- Complement existing processes
- Implement adoption of improved analysis into Business as Usual (BaU)
- Better understand the nature of climate change risks
- Enable the evaluation of prospective adaptation measures

Internal reference document

Introduction to approaches:

- GIS tool for visualisation of historical and projected impacts of weatherrelated faults
- Spreadsheet analysis prepared by GHD for adjustment of demand and DG output profiles

Teams affected

- Analysis relevant to different teams, e.g.:
 - Policy: New equipment requirements for extreme/ambient conditions
 - Design: Choice of equipment to provide additional resilience
 - Planners: Changes to demand and generation profiles

Potential applications

• Four potential applications of analysis identified

ID	Application name	Application description
1)	ED3 Business Plan	Evaluate the need for additional climate resilience expenditure
2)	Feedback to Policy team	Suitability of equipment specifications / selection of specifications under different conditions
3)	DFES preparation	Generation and demand profile adjustment
4)	ENA work	Update the industry on ACCELERATED approach and work collaboratively on risk assessment and resilience measures

Q&A

Thank you!