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1 Introduction 

1.1 Background 

Smart Meter (SM) data opens up opportunities for Distribution Network Operators (DNOs) to improve their 

database records and develop a low-voltage (LV) model which will be useful for network planning, fault 

detection and phase balancing. The adoption of low carbon technologies, such as photovoltaic panels or 

electric vehicles, is expected to significantly increase in the near future. For this reason, it is important for DNOs 

to understand the impacts that these technologies may have, particularly, on LV networks. 

The SMITN (Smart Meter Innovations and Test Network) project is an innovation project that will investigate 

how the use of SM data can be used to support network operations. The fourth use case, “Feeder Allocation”, 

is intended to resolve anomalies in the CROWN or Electric Office records whereby some MPANs may be 

recorded as having an incorrect distribution substation (SS) or LV feeder. Previous projects, such as the 

Losses Investigation, have highlighted the issues with the data such as customers being associated with the 

wrong LV feeder or sometimes the wrong distribution substation.   

Data quality and completeness of the LV networks is increasingly important to support planning and operations. 

Incorrect property assignments to the wrong substation or feeder may have a significant impact on network 

operations such as in load profiles estimation and the SM aggregation groups derived from CROWN will 

become unreliable. 

Our analysis is focused on 46 secondary substations (SS) in the Milton Keynes area with installed GridKey 

monitoring devices. Anomalies identified by the SMITN algorithms will therefore be validated against the results 

of a detailed survey using the HAYSYS Feeder Finder Unit which has been developed in this project.  

1.2 Document Purpose 

This document presents a high-level description of the algorithms selected for the “Feeder Allocation” use case 

and will present and discuss the results, using validation data from HAYSYS.  

The purpose of this analysis is to: 

 detect outlier customers who appear not to be connected to the SS shown in the CROWN database, 

 detect outlier customers who appears not to be connected to the LV Feeder shown in the CROWN 

database, 

 propose new SS and LV feeder for each of the identified customer outliers, 

 assess the performance of the selected algorithms, 

 assess the CROWN MPAN to Feeder connectivity data, 

 assess the EO MPAN to Feeder connectivity data. 

 

This will provide useful information to enable National Grid Electricity Distribution (NGED) and other DNOs to 

implement Business As Usual (BAU) processes to validate existing LV connectivity records and backfilling 

missing data.  

1.3 Overview 

Section 2 of this document presents an overview of the SMITN selected algorithms and a breakdown into its 

different variations.  

Section 3 presents the data pre-processing and the summary results of the selected algorithms. 
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Section 4 discusses the key learning points of this analysis.  

1.4 Abbreviations 

Term Definition 

BAU Business As Usual 

CB Circuit Breaker 

CIM (IEC 61970/61968/62325) Common Information Model for the electricity industry. 

CROWN NGED’s Enterprise Asset Management system. 

CSV Comma-Separated Value 

DCC Data Collection Company (for SM data) 

DD Data Dictionary 

DER Distributed Energy Resource 

DMS Distribution Management System (such as GE PowerOn) 

DNO Distribution Network Operator 

EAC Estimated Annual Consumption 

EAM Enterprise Asset Management (such as ARM, SAP or Oracle) 

EO Electric Office (NGED’s GIS) 

ERD Entity-Relationship Diagram 

ETL Extract, Transform and Load 

IEC International Electrotechnical Commission 

GIS Geographic Information System (such as ESRI or GE Electric Office/Smallworld) 

GUID Globally Unique Identifier 

HH Half-Hourly 

HV High Voltage 

LV Low Voltage 

INM Integrated Network Model 

JSON JavaScript Object Notation 

LCT Low-Carbon Technology e.g. heat pumps, electric vehicles or photovoltaic generation 

MAPE Mean Average Percentage Error 

MC Measurements Calculator 

MDM Master Data Management 

MPAN Meter Point Administration Number (core – the 13-digit format) 

NGED National Grid Electricity Distribution 

NHH Non-Half-Hourly 

NOP Normally Open Point 

ODS Operational Data Store 

OGC Open Geospatial Consortium 

RDBMS Relational Database Management System 

RMS 
Root Mean Square (= √

1

𝑛
∑ 𝑥2) 

RMU Ring Main Unit 

SCADA Supervisory Control and Data Acquisition 

SM Smart Meter 

SMITN Smart Meter Innovations and Test Network 

SS Secondary Substation 

SQL Structured Query Language 

TK Unique INM record identifier 

Tx Transformer 



7 

 Confidential 

Term Definition 

URI Uniform Resource Identifier 

UUID Universally Unique Identifier 

VIPQ Voltage, Current, Active and Reactive Power 

WKT Well-Known Text (an OGC spatial geometry representation format) 

XML Extensible Markup Language 
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2 Feeder Allocation Data Usage 

2.1 Trial area 

The core trial area comprises 46 SS with installed GridKey monitoring devices from the Milton Keynes area. 

2.2 Data Requirements 

The following datasets were used for the feeder allocation use case: 

1. Smart meter voltage data, with 1-minute time resolution. 

2. Smart meter voltage data, with 30-minute time resolution. 

3. Distribution substation voltage monitoring data, from GridKey loggers (1-minute resolution). 

4. Premises to distribution substations connectivity data from CROWN. 

5. Electric Office mapping data to provide connection phases of customers where this is already known. 

6. Electric Office network data. 

7. Feeder Validation data from HAYSYS. 

2.3 Pre-Calculation Validity checks 

2.3.1 Voltage Data 

1. Data Anomalies 

Low SM and GridKey voltage readings (e.g. 0V) exist in the time-series voltage data due to reading failures. 

The presence of very low values may have a negative effect in the model, for this reason records with 

unreasonable voltage readings were assessed and removed or corrected. 

2. Clock Offsets 

Another issue that may impact the results is the clock offsets between the SM voltage data, i.e. a discrepancy 

in voltage data time logging between the SMs. This issue is particularly present in voltage data with lower 

resolution (i.e., average 1-minute voltage data). An algorithm that identifies the offset difference between the 

SM and GridKey was created and applied. The aim is to synchronise the voltage curves.  

3. Measurement Interval Synchronisation 

The half hourly (HH) voltage readings from SMs use intervals with an arbitrary starting time within clock half 

hours. Similarly, voltage data with higher time resolutions (i.e. 1 minute voltage data) may start in the middle of 

a clock minute. Time synchronisation is important as there is a direct comparison of the voltages from SMs and 

GridKey for each time period. 

As a result, higher-resolution voltage data provides not only an improved visibility of the short-term voltage 

variations, but also a reduction in the time offsets between the measurement intervals used by each SM. 

Two approaches have been developed to deal with this issue: 

 Timestamp rounding 

For the 1-minute voltage data, the timestamp seconds have been rounded to the closest minute, while for the 

HH data, the minutes have been rounded to the closest 30-minute period.  
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 Linear Interpolation 

Linear interpolation is helpful when searching for a value between a given set of points. It is a method to 

construct new data points within the range of a discrete set of known data points. In other words, Linear 

Interpolation allows us to estimate voltage values at times that we do not have them at, given that we have 

readings soon before and soon after that time.  

2.3.2 GridKey and SM Load Measurements 

2.3.2.1 SM Errors 

There are occasional errors in the collected kW values from smart meter aggregation groups. These are 

identified and recorded for each feeder/substation-day so that those feeder/substation-days can be excluded 

from any analysis. 

Smart Meter data errors are identified as a day: 

 with any period with a value greater than 500kW, 

 average kW for a day is less than -10kW, 

 average kW for a day is greater than 500kW 

 

2.3.2.2 GridKey Errors 

GridKey Feeder measurements are provided at a time granularity of 1 minute. These are averaged to create 30 

min data (HH period). 

GridKey errors are identified for any day for the feeder/substation: 

 where there are less than 20 minutes in any HH period  

 where there are less than 1360 minutes in a day  

 Where the measurement is less than 1 W and greater than -1 W (this identifies feeder measurements 

for a feeder where fuses are removed) 
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2.4 Feeder Allocation Approaches  

2.4.1 Results from Phase Identification 

2.4.1.1 Outliers from Phase Identification 

In the Phase Identification use case, we initially assumed that the connectivity between premises and 

distribution SSs obtained by CROWN was correct. However, during the SMITN analysis it became clear that 

there are errors in the mapping between customers and LV feeders and between customers and SS records in 

CROWN.  

In the “Feeder Allocation” use case, we will use the results obtained from the “Phase Identification” use case. It 

was known from previous work by Scottish and Southern Electricity Networks and Scottish Power Energy 

Networks that meters with very low correlation results may be fed from a different substation.  

In the first approach (see “Phase Identification” report), the correlation used time-series voltage data from a 

single-phase SM paired with SS monitoring data. For each single-phase SM, three correlation results were 

obtained, one for each phase measurement at the substation. Outliers were identified and tested to see if they 

belong to other distribution substations using topology proximity. 

Ideally, the outliers that are identified would be tested against their neighbour SS, but this is out of the scope of 

this project because of the absence of SS monitoring data and SM data outside of the core area.  

In the second approach, “clustering SMs into 3 groups”, the proposed clustering algorithm clusters the SM into 

three groups, one for each phase. However, meters that are fed from different substations may be assigned to 

the wrong cluster. Outliers from the clustering techniques will be identified and pinpointed for review.  

It is noted that this approach is only effective when identifying meters that are fed from a different substation, 

while it is not able to distinguish the meters that fed from the same substation but have been assigned to the 

wrong feeder.  

2.4.1.2 Correlation with neighbouring SS 

During the SMITN analysis we identified that properties could have a strong voltage correlation result with the 

GridKey data of a wrongly assigned SS in cases where the two SS are fed from the same primary substation. 

In this case, even if the properties are fed from the neighbour SS, the previous algorithm will not be able to 

identify them as outliers.  

In this case, the algorithm repeats the “Phase Identification” approaches using the data from both examined SS 

if they are available in the core area. Then, the SMs are assigned to the SS which have higher correlation 

results.  

2.4.2 Clustering SMs into N groups 

This approach is focused on identifying SMs that have been assigned to the wrong feeder. Prior knowledge of 

phase information is needed for this approach. For this reason, the results from “Phase Identification” will be 

used to assign a phase to each SM.  

The algorithm is outlined as follows: 

1. Calculation of voltage correlation between each pair of SMs. This is a matrix of dimensions NmxNm, 

where Nm is the number of SMs in the analysis.  
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2. For each phase, clustering the SMs into Nf groups using unsupervised machine learning – clustering 

techniques, where Nf is the number of feeders in each substation.  

3. Repeat steps 1 and 2 using multiple variations of the input data (i.e., magnitude of voltage time-series, 

voltage step changes) and assess their performance.  

Hierarchical clustering was applied, as it was proven to be the most effective clustering technique in the “Phase 

Identification” use case. Moreover, we have tested again the algorithm’s performance of using the time-series 

voltage data and the step changes. Finally, we tested the algorithm’s sensitivity to SM coverage.  

2.4.3 Voltage correlation with aggregated feeder demand 

In this approach, feeders are identified by correlating the smart meter voltage drops with the aggregated load 

on each feeder. This aggregated load data is provided by substation monitoring. 

The algorithm is outlined as follows: 

1. For each phase, the algorithm subtracts each SM voltage curve from the GridKey voltage reference.  

2. It correlates the voltage differences with the aggregated load on each feeder.  

3. For each SM, the algorithm assigns the feeder with the strongest correlation as the predicted feeder.   

This approach requires accurate phase information. The results from “Phase Identification” use case were 

used.  

2.4.4 Discrepancies between EO and CROWN  

The network topology and geospatial data will be obtained from EO. In EO, meter details have been added 

recently in many places in the LV network topology but there are still many places where meter information is 

not available.   

During the SMITN analysis, we identified that there are discrepancies between CROWN and EO data. To store 

the data from EO and compare them with CROWN, we used CGI’s INM (Integrated Network Model) data model 

which can be utilised to enhance and improve the LV model.  

In areas where meter information has been populated in EO as well as their service connections to the main 

cables, we were able to assign substation and feeder number to each meter using the information that exist in 

the EO cables (“connectivity approach”). The feeder and the substation number for each meter which obtained 

using the “connectivity” approach will be compared with the CROWN data.  

In areas where the meter information is not available in EO, we used the meter coordinates from CROWN data. 

A distance function was used to find the distance for each meter to its closest LV feeder. Each meter will be 

assigned a feeder using the “proximity” approach, and this information will be compared with the CROWN data.  

2.4.5 Feeder Profiles Outliers 

In this approach, we will use the initial results from “Feeder Profiles” use case. The Feeder Profiles use case 

calculates an estimate of the Feeder load and then compare this with the measured data at the SS. Different 

algorithms are proposed to calculate the feeder load (see “Profile Planning” report). In this report we will use 

the NHH1 estimation algorithm. (see Appendix A.8).   

It has been confirmed that the algorithms used in “Feeder Profiles” use case are sensitive to customer-to-

feeder connectivity. Wrong customer assignments lead to significant errors in feeder load estimation. The 
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proposed algorithm identified feeder allocation errors by comparing the difference between expected demand 

and the measured demand. First, the load in SS and feeder level is estimated using the CROWN connectivity 

data. Subsequently, the feeder load was estimated again using EO data (see section 2.4.3). The daily Mean 

Absolute Percentage Error (MAPE) is calculated for each feeder (see Appendix A.7). The purpose of this 

approach is to identify feeders with big EO and CROWN discrepancies and assess the connectivity in two 

systems using the results from the load profiles.  

2.4.6 Validation Data 

2.4.6.1 HAYSYS 

Identifying the Feeder cables connected to the substation to be surveyed is achieved through the use of the 

HAYSYS Feeder Finder.  The Feeder Finder achieves this identification by placing its current injector unit which 

induces a current into each of the substation Feeder neutral cores (typically the armouring of the Feeder 

cable).  These currents are at a frequency of 5MHz and modulated with a specific code, that is different for 

each of the substation feeders being surveyed. The Feeder Finder can inject into up to four feeders.  The 

Feeder Finder detector is a mobile device, that is battery powered and used to detect the magnetic fields 

surrounding the feeders as a result of the currents injected at the substation.  The detector differentiates 

between the magnetic fields through the identification of the codes modulated onto the 5MHz injected 

signals.  Through the Feeder Finder display software, the codes are processed and the measured feeder value 

determined, displayed and recorded. 
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3 Results 

3.1 Data Preparation 

3.1.1 Core Area 

In the core area of the SMITN project, there are 8809 properties, from which 47% of them have installed a SM 

up to the end of November 2022.  This is slightly higher than the overall average for NGED, which is nearer 

40%, as substations with a higher proportion of smart meters were preferentially selected for inclusion in the 

SMITN test network. 

Initially, HH voltage data was requested from the devices for the period 1st May 2022 until 31st August. Around 

2200 devices gave a response, which gives a success rate of 57%. A request was then issued to all devices to 

amend the Average Voltage Measurement Period to 1 minute from the default of 30 minutes. 1810 devices 

gave a response. 1 minute voltage data was requested and from the beginning of October until 30th November 

2022.  

 

Figure 1: Core Area Device Analysis 
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3.1.2 Sample Voltage Data 

Figures 2 and 3 show an example of SM time-series voltage data and the time-series SS voltage data with 1 

minute and HH resolution. The SS monitoring data with one minute time resolution is post-processed to derive 

HH samples that are aligned with the timing of the 30-minute voltages of SM’s. 

 

Figure 2:Sample 1-minute voltage data from a SM and its Distribution Substation  

 

Figure 3: Sample HH voltage data from a SM and its Distribution Substation  
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3.1.3 Data Cleansing and Meter Delays 

Analysis has been undertaken to identify anomalies in the time-series voltage data. In particular, unusually low 

voltage readings in both 1-minute and 30-minute data. These data quality issues could degrade the 

performance of the analysis and to the model, so data cleansing was required. Voltage readings lower than 200 

V were identified and removed.  

 

Figure 4:Sample “0” reading in SM data 

A second data issue that was identified was SM voltage reading clock offsets relative to substation logger. The 

timing of the smart meter voltage data was generally well-aligned to the substation monitoring data. However, 

56 SMs out of 1810 found to have a clock synchronisation issue relative to substation logger. It is unclear from 

this data if the offset is introduced from the SM or from the substation logger. 

While the voltages from GridKey and the voltages from the SM’s have the same timestamps, there are a 

number of SM’s whose voltage profile curves lead the secondary SS’s voltage, and others which lag 

significantly. The presence of this issue is more often in higher resolution data, in our case in 1-minute data. 

Figure 5 shows an example of a SM voltage having a 5-minute offset. The graph shows a period of 1 hour.  



16 

 Confidential 

 

Figure 5: A SM with 5-minute offset relative to substation logger 

To deal with this issue, an algorithm was created to identify potential offsets. The offset checking algorithm 

checks offsets between -5 and +5 minutes with a 15 second resolution. If the algorithm doesn't find an 

improvement in voltage correlation by a threshold in that range, then it does a broader search, checking 

between -60 and +60 minutes with a resolution of 60 seconds. The voltage correlation is calculated by using 

the magnitude of voltage step changes. If the correlation result was improved by more than a set threshold (i.e. 

0.1), then the offset was applied to the voltage data. The voltage curve is then corrected. 56 SM devices were 

identified to have a clock offset relative to substation logger. Table 1 presents the recommended minute offset 

from the algorithm for sample devices and Figure 6 shows the distribution of the clock offsets for the 56 SMs. 

Substation Device Approximate minute offset (m) 

942757 Device 1 1.75 

942086 Device 2 7 

945237 Device 3 -0.75 

942756 Device 4 1 

945113 Device 5 2.25 

942756 Device 6 -0.75 

942774 Device 7 -2.5 

942774 Device 8 -0.75 

Table 1:Sample devices with the recommended minute offset 
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Figure 6:Distribution of clock offsets relative to substation logger (for the 56 SM) 

 

3.2 Results from Phase Identification 

3.2.1  “Outliers from Phase Identification” 

3.2.1.1 Direct correlation between SM and GridKey 

The voltage correlation between the SMs and the GridKey data was expected to be high. However, there are 

many factors that could impact the correlation results, such as the time synchronisation between meters, the 

frequency of sampling etc. Moreover, low correlation results between the SMs and GridKey may suggest that 

these SMs have been assigned to a wrong SS.  

To apply the proposed algorithm, each property needs to have: 

 Available time-series voltage data, 

 Available GridKey time-series voltage data.  

Figure 7 illustrates the distribution of the correlation results using as input the time-series of the voltage step 

changes (step changes) as this was proved to be the most efficient approach in the “Phase Identification” 

report. We can observe that there are a number of SMs where the correlation values are very low and these 

have been identified as outliers and pointed out for review. A reasonable threshold is around 0.2 and 0.3, but 

the threshold needs further investigation when the results from the HAYSYS feeder survey will become 

available. 
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Figure 7: Distribution of correlation results using voltage step changes 

Figure 8 shows an example of low correlation results in “942756” SS. The SMs with a yellow colour have been 

identified by the algorithm as outliers. EO network data has suggested that these SMs are fed from the 

neighbour substation ‘942351’.  

 

Figure 8: Outliers from Phase Identification for ‘942756’ 
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3.2.2 Correlation with neighbouring SS 

In the case of where the examined SS and the neighbouring SS are fed from the same primary feeder, the 

correlation may be high even if the property has been assigned to the wrong SS. Figure 9 illustrates an 

example of two neighbouring substations (‘945487’, ‘942840’) fed from the same HV feeder (‘940045/06’). The 

feeders from each substation have been colour-coded, with blue the feeders from ‘945487’ SS, with red the 

feeders from ‘942840’ SS and with green the HV feeder from the primary substation ‘940045’. All the properties 

in this figure (23,24,25,26,27,28,29,30) are fed from the substation ‘942840’ according to CROWN records 

while there is no information about these properties in EO data. Their correlation result with ‘942840’ GridKey 

data is very high (correlation results with red) 

 

Figure 9: Wrong MPAN assignments between two SS which are fed from the same primary feeder 

Investigating the EO LV network data and the distance of each SM to its closest LV feeder (see approach 3.4), 

suggests that the SMs 27,28,29,30 are fed from ‘945487’ SS. However, as their correlation results are very 

high, the algorithm discussed in the previous section will not be able to pick these SMs as outliers.  

In these cases, the algorithm identified the SSs that are fed from the same primary feeder, and recalculated the 

correlation results using the GridKey from the neighbouring SS. If the correlation result increases, the algorithm 

identifies these properties as outliers and highlights them for review. In the absence of GridKey data, the 

process can work using SM voltage data from both SS in which we have high confidence that the allocation in 

CROWN data is correct.  

In the example in Figure 9, the correlation has been re-calculated using the GridKey data from ‘945487’ SS. 

The correlation for SMs 27,28,29,30 has been increased (blue colour correlations) which indicates that the 4 

SMs are fed from the ‘945487’ SS and the initial CROWN assignments are incorrect. In contrast, the correlation 

decreased for SMs 23,24,25,26 which means that the initial CROWN assignments are correct.  
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3.3 Clustering SMs into Feeder groups 

To identify SMs that have been allocated to the wrong feeder, unsupervised machine learning – clustering 

techniques – will be used. For each phase, the algorithm will create Nf groups, where Nf is the number of 

feeders in each substation. The correct phase information is very important in this approach and the phase 

information from the phase identification use case will be used.  

Figure 10 shows an example of the clustering results for “940337” SS and phase ‘L2’. On the right, there is a 

heatmap, which shows the correlation results for each pair of SM. The green colours represent the pairs of SMs 

that are highly correlated, while the red colours are the pairs of SMs with very weak correlation. In this figure, 

the SMs have been ordered based on the clustering group (feeder group) that the algorithm assigned them 

(1,2,3,4). We can observe, how the algorithm managed to create four distinguished clusters, one for each 

feeder.  

To assign the actual feeder number to each cluster, the CROWN data was used. The label of each cluster is 

determined based on the greatest number of MPANs belonging to a feeder within the cluster. Here we can see 

that Device 8 and Device 7 have feeder numbers in CROWN that do not agree with the clustering results.  
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Figure 10: Correlation Heatmap and Clustering results for 940337 phase L2. 

The same process repeats for phases L2 and L3.  In Figure 11 we can observe the clustering results for the 

substation ‘940337’. We colour-coded the number of feeders. Green represents feeder no 1, pink represents 

feeder no 2, brown feeder no 3 and blue feeder no 4. The squares represent the properties and their colour 

represent their feeder number in CROWN records. On top of the squares, there are small circles, which 
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represent the clustering results. When the squares and circles have the same colour, it means that CROWN 

records and clustering results agree.  

 

Figure 11: Clustering results for ‘940337’ 

The clustering managed to separate feeder 3 and feeder 4 into two separate clusters without any changes to 

CROWN records. However, feeders 1 and 2 are parallel feeders and the algorithm identified potential incorrect 

assignments in CROWN records (see Figure 11).  

It is noted that SMs that are very close to the SS have very similar voltage curves and the result of the 

clustering is less reliable. For this reason, the algorithm excludes the SMs that are in a distance of 50 meters 

from the substation. Moreover, Silhouette Score is a metric used to calculate the quality of a clustering 

technique. Its value ranges from -1 to 1. 1 means cluster are well apart from each other and clearly 

distinguished. In order to increase the reliability of the algorithm, SMs with very low Silhouette Score (less than 

0.3) has been removed from the analysis and not highlighted for review.  

3.4 Voltage correlation with aggregated feeder demand 

In this approach, we first calculated the voltage difference between each SM voltage curve and the GridKey 

voltage reference. Then the algorithm correlates the voltage differences with the aggregated load on each 

feeder. The algorithm assigns the feeder with the strongest correlation as the predicted feeder.  

We then run the correlation algorithm on consecutive 4-hour periods. The feeder demand that correlates best 

with each property is recorded for each 4-hour block, and then we take the most common result for each 

property as the feeder assignment. We then calculate a confidence score as the percentage of times that this 
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correlation algorithm gave the same result as the most common result for that property over all these 4-hour 

blocks.  

Figure 12 illustrates the results of this approach for the substation “940337” that we discussed in the previous 

section. This approach gave the same results with the previous approach for all the 4 feeders.  

 

 

Figure 12: Wrong feeder assignments 

 

3.5 Discrepancies between EO and CROWN  

EO data is another source that can be used to identify the MPAN connectivity. To identify the feeder for each 

MPAN in EO, two methods were used: 

1. Where the service connection and premise details exist in EO, the feeder information was obtained 

from the EO LV feeders with the “connectivity” approach.  

2. Where the service connection and MPAN information does NOT exist in EO, a proximity algorithm is 

used to identify the closest LV feeder for each MPAN using the coordinates obtained from CROWN. 

Then, the algorithm compares the information from CROWN and EO and flags the properties where the LV 

connectivity is different in the two systems.  

We need to note that the “proximity” approach may not be representative of the correct MPAN to feeder 

connectivity in cases where parallel cables exist. For this reason, the algorithm excluded the properties that are 

close to parallel feeders from the analysis.  

Figure 13 illustrates the discrepancies between EO and CROWN per substation. Out of 8809 MPANs, there are 

958 MPANs with suspect feeder ids.  
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Figure 13: Discrepancies between EO and CROWN 

There are various explanations for these differences that would not necessarily mean CROWN is wrong:  

 The “proximity” approach can lead to wrong EO assignments as the MPAN might just be connected to 

a more distant feeder. 

 The circuit ids are missing on some cables so a connection to the assigned feeder might not be found. 

 The circuit id numbering in EO could be wrong, rather than the numbering in CROWN. The 940717, 

942647, 942649, 945487 SSs have a numbering issue.  

3.6 Feeder Profiles Outliers 

In the “Feeder Profiles” use case, we have discussed that the results from the proposed algorithms are very 

sensitive to MPAN to Feeder connectivity. The algorithms used the connectivity data both from CROWN and 

EO and the results varied significantly. However, there were cases that the daily MAPE has decreased 

significantly when the algorithm used the connectivity data from EO instead of CROWN, but there were cases 

where CROWN data seems to be more accurate than EO. In this section, we will discuss how we can use the 

“Feeder Profile” NHH1 approach to validate the CROWN and EO discrepancies which will provide another way 

to validate the connectivity of the two sources.   

3.6.1 Substation Changes 

The calculation of the SS load profiles can be used to identify if the MPANs have been allocated to the wrong 

substation. The algorithm identified the substations where the daily MAPE is very low when we use the data 

from the one source, but the error increases significantly when the other source has been used. Table 2 

includes the daily MAPE from the calculation of the SS profiles using CROWN and EO. The “Out” column 
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represent how many MPANs are recommended to move out from the substation based on EO data, while the 

“In” represents  how many MPANs are recommended to be included in the substation based on EO data. Then, 

the algorithm Accepts or Rejects these transfers.  

 
MAPE MPAN Transfers 

Substation CROWN EO Out In Status 

940458 5 46 3 1 Rejected 

941988 11 5 6 0 Accepted 

942037 3 10 4 0 Rejected 

942647 30 4 3 4 Accepted 

942680 31 11 3 1 Accepted 

942756 33 3 107 0 Accepted 

942774 17 9 11 0 Accepted 

942814 18 46 4 0 Rejected 

942840 19 5 31 0 Accepted 

942855 7 47 1 2 Rejected 

942877 13 23 8 0 Rejected 

942950 20 55 5 3 Rejected 

944922 9 17 4 2 Rejected 

Table 2: MAPE using the connectivity data from CROWN and EO 

An example of wrong SS assignments has been discussed in section 3.2.1 for the ‘942756’ SS. A number of 

SMs have been identified as outliers from the voltage correlation. As the “SS Profiles” approach works for 

MPANs with and without SMs, this algorithm has identified 107 wrong assignments in CROWN data for the SS 

‘942756’.  

In figure 14, the LV feeders cables from ‘942756’ SS have been coloured in red, while the feeders from the 

neighbouring SSs are in blue. The properties that are fed from ‘942756’ based on CROWN data are the red 

dots. We can observe that there are three sections of the feeders where CROWN data looks inconsistent with 

EO data. From the SS profile estimation results, we can confirm that the use of the EO data decreased the 
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average percentage of the ME from 33% to 3%.  The algorithm accepts the MPAN transfers and EO source 

labelled as correct.  

 

Figure 14: Wrong MPAN assignments in CROWN  

 

3.6.1.1 Feeder Changes  

Similar to the previous approach, the estimated feeder profiles can be used to identify wrong MPAN 

assignments on the feeder level. The algorithm compares the performance of the estimated feeder profiles 

using MPAN connectivity from CROWN and EO and accepts or rejects the initial proposed reassignments in 

CROWN data.  
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Figure 15: Comparison between EO and CROWN MAPE 

Figure 15 illustrates a scatter plot which demonstrates the differences in MAPE between CROWN and EO. The 

feeders that are close to the red diagonal line have similar MAPE using both CROWN and EO, above the red 

line are the feeders that perform better using EO data while below are the feeders that CROWN connectivity 

data seem more accurate.  

The algorithm excluded the feeders from the analysis when: 

 the MAPE is similar when using CROWN and EO (difference lower than 5%) – 62 feeders, 

 the MAPE didn’t decrease lower than 20% even if either CROWN or EO were used – 18 feeders. 

These feeders need further investigation to understand the big daily MAPE.  

Table 3 shows the results for the proposed feeder changes.   

 

Feeder 

MAPE Movements from 

Neighbour SS 

Movements between 

feeders from the same SS 

 

Status 

EO CROWN out in out in 

CIRC:940337:1 10 29 0 0 0 10 Accepted 

CIRC:940337:2 16 42 1 0 10 0 Accepted 

CIRC:941985:3 21 13 4 2 0 2 Rejected 
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CIRC:942037:5 22 15 3 0 0 0 Rejected 

CIRC:942086:1 18 8 0 0 15 0 Rejected 

CIRC:942086:2 19 4 2 0 0 15 Rejected 

CIRC:942368:4 19 13 0 0 0 1 Rejected 

CIRC:942647:2 19 416 1 2 77 11 Accepted 

CIRC:942647:3 9 56 0 0 27 71 Accepted 

CIRC:942647:4 17 24 2 0 11 33 Accepted 

CIRC:942649:2 16 158 3 0 142 70 Accepted 

CIRC:942651:3 31 7 1 7 0 2 Rejected 

CIRC:942681:1 27 11 1 3 1 1 Rejected 

CIRC:942695:2 9 18 7 1 1 1 Accepted 

CIRC:942755:2 22 9 0 0 1 8 Rejected 

CIRC:942755:4 17 56 5 0 6 1 Accepted 

CIRC:942756:1 5 33 49 0 0 0 Accepted 

CIRC:942756:2 8 92 58 0 4 0 Accepted 

CIRC:942757:1 58 18 3 0 7 0 Rejected 

CIRC:942774:2 9 16 10 0 6 5 Accepted 

CIRC:942855:1 78 9 1 2 3 0 Rejected 

CIRC:942855:4 13 8 0 0 0 1 Rejected 

CIRC:942877:1 24 16 8 0 0 0 Rejected 

CIRC:942978:1 10 18 0 0 3 0 Accepted 

CIRC:942978:3 14 21 5 1 2 0 Accepted 

CIRC:944922:2 17 7 4 1 0 0 Rejected 

CIRC:944922:4 17 11 0 1 1 1 Rejected 

CIRC:945237:1 22 16 0 0 0 6 Rejected 

CIRC:945487:1 12 51 0 1 1 73 Accepted 

CIRC:945487:5 8 54 0 20 73 1 Accepted 

Table 3: Suggested MPAN to Feeder changes for each feeder 

Feeders ‘940337:1’ and ‘940337:2’ are two feeders running in parallel on the network (see Figure 12). Using 

the CROWN connectivity data, the estimated profile for feeder 1 was considerably underestimated, while the 

feeder 2 was overestimated. Based on the EO “connectivity” and “proximity” approaches, the algorithm 

suggested 10 MPANs to move from the feeder 2 to feeder 1. Making these changes, the daily MAPE 

decreased from 29% to 10% for feeder 1 and from 42 to 16% in feeder 2. However, feeder 1 is still 

underestimated and feeder 2 is overestimated.  Figure 16,17 illustrates an example of the estimated profiles for 

‘940337’ feeder 1 and 2. 
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Similar observations were received from the clustering algorithms in section 3.3. Five SMs were suggested by 

the algorithm to be moved from feeder 2 to 1 and two to move from feeder 1 to 2. Applying the additional 

changes from the clustering algorithms and calculating again the estimation for feeder profiles, the daily MAPE 

decreased to 8.7% for feeder 1 and to 13.5% for feeder 2. It is noted that the clustering algorithm can only work 

for the properties with SMs.  

Combining the estimated profiles from feeder 1 and feeder 2 and comparing them with the real measurements 

led to the daily MAPE decreasing to 5% (see Figure 18), which indicates that there are probably more 

properties that are still misallocated between the feeder 1 and 2.  

 

 

Figure 16: Measured Vs Estimated load profile for 940337:1 
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Figure 17: Measured Vs Estimated load profile for 940337:2 

 

 

 

Figure 18: Measured Vs Estimated load profile for 940337:1 + 940337:2 
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3.7 Ensemble Modelling and BAU Adoption 

Some of the proposed algorithms can work without the existence of SS monitoring, while many algorithms need 

SS monitoring. Moreover, most of the proposed algorithms require the phase to be already known. Figure 19 

illustrates the high-level proposed methodology in both cases for BAU adoption.  
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Figure 19: High-level proposed methodology 
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3.8 Summary Results using HAYSYS validation data 

HAYSYS initially tested 218 properties. The feeder survey results for these 218 properties have an accuracy 

based on CROWN records of about 68%, while using the EO as main source the accuracy increased to 81%.  

Then, HAYSYS tested more properties that have been highlighted from the algorithms and the results are the 

following.  

3.8.1 Discrepancies between EO and CROWN - Results 

3.8.1.1 Properties that fed from neighbouring SS 

There are 337 properties that CROWN and EO disagree regarding the substation that are fed from. 37 

properties have been tested from HAYSYS. For 5 properties, HAYSYS agree with CROWN data and for 1 with 

EO. For 31 properties, HAYSYS did not receive signal. This means that the properties are fed from a different 

substation and not from the one that CROWN suggests. As a result, the EO data could be the correct source of 

truth, but we don’t have confirmation from HAYSYS feeder survey.   

As a result, 86% of the properties that have been highlighted for review because of the discrepancies between 

EO and CROWN are not fed from the SS that CROWN records.  

3.8.1.2 Properties that fed from different feeder 

There are 795 properties that CROWN and EO disagree regarding the feeder number that they are fed from. 

For 85 properties, we have HAYSYS feeder validation data. For 76 properties, HAYSYS agree with EO data 

and for 3 with CROWN. Moreover, for 6 properties, HAYSYS did not agree either with CROWN or EO.  

As a result, 96% of the tested properties that have been highlighted for review because of the discrepancies 

between EO and CROWN are not fed from the feeder that CROWN suggests. 90% of those are fed from the 

feeder that EO suggests.  

3.8.2 Outliers from Phase Identification - Results 

38 SM have been highlighted from the “Outliers from Phase Identification” approach that are fed from different 

SS. We have HAYSYS validation data for 10 properties. HAYSYS did not receive a signal for these 10 

properties, which means that these properties are not fed from the SS that CROWN suggests, and the 

algorithm correctly highlighted them for review.  

As a result, the algorithms accuracy is 100% for the tested properties. 

3.8.3 Correlation with neighbouring SS - Results 

26 SM have been highlighted from the algorithm that are fed from the neighbouring SS. We received HAYSYS 

validation data for 14 SM. For 13 SM, HAYSYS agree with the approach results, while 1 wrongly has been 

identified as outlier from the algorithm based on HAYSYS validation data.  

As a result, the algorithms accuracy is 93% for the tested properties. 
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3.8.4 Clustering SMs into Feeder groups 

1. Out of 1559 SMs, the algorithm managed to assign a feeder number to 1220 with high confidence. We 

excluded the SM that are very close to SS (less than 50m) as the voltages are very similar. Also, we 

excluded the SM where the silhouette score (see Appendix A.3) of the clustering is less than 0.3.   

2. For 57 SM, the algorithm did not agree with CROWN and highlighted for review.  

3. From the 57 SM, the 11 SM agreed with EO while the other 46 did not agree with either EO or 

CROWN.  

4. 15 out of 1220 SMs have been reviewed by HAYSYS. 1 of them agreed with the algorithms result and 

other 7 has been allocated to the correct cluster but due to the numbering issue between CROWN and 

EO, the feeder numbers are different.  6 SMs do not agree either with CROWN or EO or HAYSYS. 

Most of them belong to “942774”. We need to review why the clustering in this substation did not 

perform well. However, the HAYSYS results for this substation did not agree with EO or CROWN 

either.  

substation Device New cluster EO Feeder CROWN Feeder  HAYSYS 

940337 Device 1 1 1 2 F1 

940337 Device 2 1 1 2 F3 

942647 Device 3 4 2 4 F2 

942647 Device 4 4 2 4 F2 

942647 Device 5 4 2 4 F2 

942647 Device 6 4 2 4 F2 

942647 Device 7 5 1 5 F1 

942647 Device 8 5 1 5 F1 

942647 Device 9 5 1 5 F1 

942756 Device 10 1 3 3 F3 

942774 Device 11 4 3 3 F5 

942774 Device 12 4 3 3 F5 

942774 Device 13 4 3 3 F5 

942774 Device 14 4 3 3 F5 

942774 Device 15 4 3 3 F5 
Table 4: Clustering Results 

3.8.5 Voltage correlation with aggregated feeder demand 

1. Out of 1559 SM, the algorithm managed to assign a feeder number to 1114 SM with confidence > 0.8.  

2. For 300 SM, the algorithm did not agree with CROWN and highlighted them for review.  

3. From the 300 SM, the 65 agree with EO while the other 235 did not agree either with CROWN or EO.  

4. 15 SMs have been reviewed from HAYSYS. 13 SM agreed with HAYSYS. Accuracy = 87% 
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3.8.6 Feeder Profiles - Results 

3.8.6.1 Properties that fed from neighbouring SS 

In this approach, 58 properties have highlighted for review. The algorithm suggests that for 26 properties the 

accepted source is EO, while for the rest 32 the accepted source is CROWN. We have only 3 HAYSYS results 

which agree with the algorithm results. Accuracy = 100% 

3.8.6.2 Properties that fed from different feeder 

In this approach 410 properties have been highlighted for review. The algorithm suggests that for the 291 the 

accepted source is EO while for 119 properties the accepted source is CROWN. 28 properties have been 

reviewed by HAYSYS. 20 of them agree with algorithms’ results. Accuracy = 71% 
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4 Summary of Learning Points 

 Feeder allocation errors in the database occur on most feeders. 

 On some feeders, there are significant numbers of errors due to numbering swaps. 

 Feeder identification is less straightforward than phase identification. 

 Many approaches requires that phase identification is already correct. 

 Voltages for connections near the substations are similar on each feeder and the clustering approach 

cannot easily separate them. 

 EO and CROWN are the two sources that can be used as a starting point to assess the MPAN to 

feeder connectivity.  

 Voltage data are very promising to identify outliers and misallocations.  

 

 

Future Work 

 

 Identify missing customers that do not exist either in EO or CROWN. 

 Investigate the integrated use of a combination of algorithm types (ensemble modelling) to increase the 

probability of data accuracy. 

 The “Voltage correlation with aggregated feeder demand” assigned many SMs in a feeder where 

neither CROWN nor EO agree. Further investigation is needed to assess and improve the approach.  

 Define methodology for BAU adoption. 
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5 Appendix 

A.1 Pearson Correlation 

Pearson Correlation measures the strength of the linear relationship between two variables. It has a value 

between -1 and 1 with a value of -1 meaning a total negative linear correlation, 0 being no correlation and +1 

meaning a total positive correlation.  

In other words, if the value is in the positive range, the relationship between variables is positively correlated, 

and both values decrease or increase together. On the other hand, if the value is in the negative range, it 

shows that the relationship between variables is negatively correlated, and both values will go in the opposite 

direction.  

Pearson’s correlation formula is as follows. 

𝑛(∑ 𝑥𝑦 
  ) − (∑ 𝑥 

  )(∑ 𝑦 
  )

√[𝑛 ∑ 𝑥2 
  − (∑ 𝑥 

  )2][𝑛 ∑ 𝑦2 
  − (∑ 𝑦 

  )2]
 

A.2 Hierarchical Clustering  

Hierarchical clustering methods are divided in two categories, agglomerative and divisive. Agglomerative 

hierarchical clustering is a “bottom up” approach. In this method, each object is a different cluster in the 

beginning. Then one pair of clusters is merged at a time and the method continues until all clusters are merged 

into one cluster. On the other hand, divisive hierarchical clustering is a top-down approach. In this approach, all 

objects are initially in one big cluster and then split into smaller clusters until each object forms an individual 

cluster. A dendrogram is used in order to present the results of hierarchical clustering. Figure 13 illustrates an 

example of the way the agglomerative and divisive hierarchical clustering work. 

 

Figure 20: Agglomerative vs Divisive Hierarchical Clustering 
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Squareform and pdist are two different methods of calculating distances in hierarchical clustering. Squareform 

is used when all the data points are arranged in a square matrix and is more efficient in hierarchical clustering 

as it uses a single distance matrix to calculate all the distances between all the points, while pdist requires 

separate calculation for each pair of points. On the other hand, pdist is more accurate as it takes into account 

the actual distances between each pair of points.  

A.2.1 Linkage Function between clusters 

The creation of the hierarchical cluster tree requires a distance metric which calculates the distance between 

clusters. There are multiple linkage methods, the single, complete, average, centroid and Ward’s linkage 

method.  

Single Linkage 

In the single linkage method, the distance between two clusters is 

defined as the shortest distance between two points in each cluster. In 

Figure 7, we can see that the distance between two clusters, a and b is 

the length of the arrow that unites the two clusters’ closest points. 

𝐿(𝑎, 𝑏) = 𝑚𝑖𝑛 (𝐷(𝑥𝑎𝑖 , 𝑥𝑏𝑗))  (2.3) 

Complete Linkage 

On the other hand, in complete linkage hierarchical clustering, the 

distance between two clusters a and b is the length of the arrow that 

connects the two points in the two clusters which are as far away as possible. 

𝐿(𝑎, 𝑏) = 𝑚𝑎𝑥 (𝐷(𝑥𝑎𝑖, 𝑥𝑏𝑗))   

Average Linkage 

In average linkage method, the distance between two clusters is defined 

as the average of all pairwise distances across the two clusters.  

𝐿(𝑎, 𝑏) =
1

𝑛𝑎𝑛𝑏
∑ ∑ 𝐷(𝑥𝑎𝑖, 𝑥𝑏𝑗)

𝑛𝑏
𝑗=1

𝑛𝑎
𝑖=1    (2.5) 

Centroid Linkage  

 In the centroid linkage method, the distance between two clusters is the 

distance between the two mean vectors of the clusters. At each stage, 

the two clusters with the smallest centroid distance are merged.  

𝐿(𝑎, 𝑏) = 𝐷((
1

𝑛𝑎
∑ 𝑥𝑎𝑖), (

1

𝑛𝑏
∑ 𝑥𝑏𝑗))

𝑛𝑏
𝑗=1

𝑛𝑎
𝑖=1  (2.6) 

Ward’s minimum variance method  

The Ward’s linkage method is the only method that is based on sum-of-

squares criterion. At each stage, two clusters merge that provide the 

smallest increase in the combined error sum of squares. 

𝐿(𝑎, 𝑏) = 𝐷({𝑥𝑎𝑖}, {𝑥𝑏𝑗}) = ‖𝑥𝑎𝑖 − 𝑥𝑏𝑗‖
2
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A.2.2 Hierarchical Clustering using SMs 

The clustering algorithm starts with each device in its own singleton cluster. The algorithm takes the clusters 

with the smallest distance between them (from the linkage method) and merges them into a single cluster. 

Then the distances between this new combined cluster and all the other clusters are recalculated, and then the 

algorithm repeats until all devices are in one cluster. This algorithm then returns the history of all its merges and 

what distances were between each of the clusters it merged. 

From this history, we can pick a threshold where we ignore all merges that occurred where the distance 

between the merged clusters was above that threshold. This will give us a variable number of clusters 

depending on the threshold and the distance matrix. We can also choose a fixed number of clusters, by not 

merging any more clusters once it has made the number of clusters that we want. In phase identification, we 

pick 3 clusters. 

A.2.2.1 An example of Hierarchical Clustering 

In Table 5, we can observe an example of a correlation matrix between device’s voltage streams. 

 Device 1 Device 2 Device 3 Device 4 Device 5 Device 6 

Device 1 1 0.2 0.8 -0.1 0.1 0 

Device 2 0.2 1 0 0.9 0.8 0.1 

Device 3 0.8 0 1 0 0 0.2 

Device 4 -0.1 0.9 0 1 0.9 -0.2 

Device 5 0.1 0.8 0 0.9 1 0.2 

Device 6 0 0.1 0.2 -0.2 0.2 1 

Table 5: correlation matrix 

 

From the correlation matrix, the distance matrix is calculated. Using 𝐷𝑖,𝑗 = 1 − 𝐶𝑖,𝑗 the distance between devices 

1 and 2 is 0.8, between devices 3 and 3 would be 0, between devices 2 and 4 would be 0.1, etc. 

Starting the clustering algorithm, each device is in its own cluster. So, device 1 is in cluster 1, device 2 in 

cluster 2, etc. The algorithm checks the distance between each pair of clusters  and picks the minimum. At the 

start, this linkage method is the same as the distances between the points (because in 𝑑(𝑢, 𝑣) =

max (dist(𝑢𝑖 , 𝑣𝑗)) there is only one point in each cluster, so it is the maximum over only one distance), so it will 

just merge the clusters of the closest points. It is noted that the example uses the ‘complete’ linkage method for 

simplicity.  

Iteration 1: The closest clusters, clusters 2 and 4, have distance 0.1. Clusters 4 and 5 also have distance 0.1. 

We will pick only one pair of clusters to merge, 2 and 4. Let the new cluster containing devices 2 and 4 be 

called cluster 7. 
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Iteration 2: Cluster 4 and 2 got merged into cluster 7, and so now we need to check the distances between this 

cluster and the other clusters. The distance between cluster 5 and cluster 7 is now  

max(dist(𝐷𝑒𝑣𝑖𝑐𝑒 5, 𝐷𝑒𝑣𝑖𝑐𝑒 2), dist(𝐷𝑒𝑣𝑖𝑐𝑒 5, 𝐷𝑒𝑣𝑖𝑐𝑒 4)) = max(0.2,0.1) = 0.2.  

After calculating the new distances between the new cluster 2 and the other clusters, the closest clusters are 

now 7 and 5 (linkage distance 0.2), and 1 and 3 (0.2). We’ll randomly pick 2 and 5, so now devices 2, 4, 5 are 

now in the new cluster 8. 

Iteration 3: After recalculating the distances between clusters, clusters 1 and 3 have the smallest distance (0.2) 

so they will be merged into the new cluster 9. 

Iteration 4: The distance between clusters 8 and 9 is 1.1, between 9 and 6 it is 1, and between 8 and 6 it is 1.2. 

So, the clusters 9 and 6 get merged, and now they become cluster 10 containing 1, 3, 6. 

Iteration 5: There are only 2 clusters left, now they merge into a single cluster. 

From this history, if we want 3 clusters (e.g., one for each phase), then we will take the state after iteration 3 as 

our clusters, (1,3), (2,4,5), and (6). This looks like a good clustering because the correlations between the 

devices within each cluster are high, and the correlations of devices in different clusters are low. 

Here is a dendrogram diagram that illustrates the process. Note that the numbers along the bottom are the 

distances between the clusters when they merged. 

 

Figure 21: Dendrogram using complete linkage function 

Here is the same dendrogram but made with Ward’s linkage method instead of complete. Note that the 

distances at which clusters merge are different. 
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Figure 22: Dendrogram using complete linkage function 

 

A.3 Silhouette Score 

Silhouette Coefficient or Silhouette Score is a metric used to calculate the quality of a clustering technique. Its 

value ranges from -1 to 1. 1 means cluster are well apart from each other and clearly distinguished. 0 means 

clusters are indifferent, or we can say that the distance between clusters is not significant. -1 means clusters 

are assigned in the wrong way. 

The formula for the calculation of the Silhouette Score is: 

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑆𝑐𝑜𝑟𝑒 = (𝑏 − 𝑎)/ max(𝑎, 𝑏) 

Where, 

𝑎 = average intra-cluster distance i.e., the average distance between each point within a cluster. 

𝑏 = average inter-cluster distance i.e., the average distance between all clusters. 

A.4 Accuracy 

The accuracy of a machine learning classification algorithm is one way to measure how often the algorithm 

classifies a data point correctly. Accuracy is the number of correctly predicted data points out of all the data 

points. 

Accuracy has the following definition: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

For binary classification, accuracy can also be calculated in terms of positives and negatives as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives. 

https://deepai.org/machine-learning-glossary-and-terms/machine-learning
https://deepai.org/machine-learning-glossary-and-terms/classifier
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A.5 Rand Index & Adjusted Rand Index 

Rand Index is a clustering metric that computes a similarity measure between two clusters by considering all 

pairs of samples and counting pairs that are assigned to the same or different clusters in the predicted and true 

clustering. 

The formula for the Rand Index is: 

𝑅𝐼 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑔𝑟𝑒𝑒𝑖𝑛𝑔 𝑃𝑎𝑖𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑖𝑟𝑠
 

The RI can take values from 0 (completely dissimilar) to 1 (a perfect match). 

The Rand Index score is then adjusted for chance using the formula below: 

𝐴𝑅𝐼 =
(𝑅𝐼  −  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝐼)

𝑀𝑎𝑥(𝑅𝐼)  −  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝐼
 

This is the adjusted Rand Index, with 0 having a Rand Index the same as an average random labelling, and 1 

when the clusters are identical. 

 

A.6 Fowlkes-Mallows Scores 

Like the Rand Index, the Fowlkes Mallows scores measure the correctness of the cluster assignments using 

pairwise precision and recall. A higher score signifies higher similarity. 

Fowlkes-Mallows Index (FMI) is a geometric mean of pairwise precision and recall, using True Positive (TP), 

False Positive (FP) and False Negative (FN).  

Fowlkes-Mallow's score does not take into account True Negative (TN), it will not be affected by chance 

adjustments, unlike Rand Index. 

The formula for Fowlkes-Mallows is: 

𝐹𝑀𝐼 =
𝑇𝑃

√(𝑇𝑃 + 𝐹𝑃 ) × (𝑇𝑃 + 𝐹𝑁)
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A.7 Mean Absolute Percentage Error 

The mean absolute percentage error (MAPE), also known as mean absolute percentage deviation (MAPD), is a 

measure of prediction accuracy of a forecasting method in statistics. It usually expresses the accuracy as a 

ratio defined by the formula: 

𝑀𝐴𝑃𝐸 =
100%

n
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡
|

𝑛

𝑡=1

 

 

where At is the actual value and Ft is the forecast value. Their difference is divided by the actual value At. The 

absolute value of this ratio is summed for every forecasted point in time and divided by the number of fitted 

points n. 

A.8 NHH1 

Algorithm 
Name 

HH Customer 
Demand 

Smart meter 
aggregated demand 

NHH customer 
estimation 

Feeder/SS 
Connectivity 

NHH1-Crown An accurate reflection of 
the demand taken (Subject 
to errors in allocation 
customers to substations 
and the accuracy of the 
metered volumes). 

An accurate reflection of 
the demand taken (Subject 
to errors in allocation 
customers to substations 
and the accuracy of the 
metered volumes). 

Utilise EAC and day specific 

profile coefficients for each 

day profile class, SSC, TPR.  

Crown 

NHH1-EO As above As above Utilise EAC and day specific 
profile coefficients for each 
day profile class, SSC, TPR 

EO 

 

For more information see Combination Load Profiles for Planning Report (WP3- D1). 
 

 

 

  

https://en.wikipedia.org/wiki/Statistics


44 

 Confidential 

 

 

 

 

 

 

cgi.com 

https://www.cgi.com/

