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ABBREVIATIONS
Abbreviation Term
ASHP Air Source Heat Pump
BEV Battery Electric Vehicle
BRISTOL Buildings, Renewables and Integrated Storage, with Tariffs to Overcor
network Limitations
CCC Committee on Climate Change
DC Direct Current
DNO Distribution Network Operator
DSO Distribution System Operator
EV Electric Vehicle
FREEDOM Flexible Residential Energy Efficiency Demand Optimisation and
Management
HHS Hybrid Heating System
LCN Low Carbon Networks
LCT Low Carbon Technologies
LV Low Voltage
MADE Multi AssetDemand Execution
NIA Network Innovation Allowance
OLEV Office for Low Emission Vehicles
PHEV Plugin Hybrid Electric Vehicle
PV Photovoltaics
REX Range Extender
SOC State Of Charge
ToU Time of Use
V2G Vehicle to Grid
WPD Western PoweDistribution
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1 INTRODUCTION

With increasing focus on the decarbonisation of heat and transport, Low Carbon Technology
(LCT) asset uptake is expected to rise dramatically. \86dke adoption of EVs, low carbon
heating and LV network connectedlar PV and storage will have a major impact on distribution
network loads, requiring increased reinforcement, whilst also increasing the necessity of a secure
electricity supply. Past projects have explored each of these LCTs in isolation, but nosproject
have explored their combined impact. Smart predictive control systems for LCT assets are
emerging that could contribute significantly to the efficient operation of networks and the energy
system, but could also create unexpected consequences from fallpemergy price signals or
optimising consumer demand if not properly aggregated and integrated into the energy system.

The Multi Asset Demand Execution (MADE) project aims to gain insight into the implications of
utilising multiple energy assets within ltome, and to better understand the feasibility of
managing and aggregating these energy assets affordably to reduce network demand, and
minimise the requirement for network reinforcement. The project also aims to incentivise LCT
uptake by unlocking networ&nd broader energy system value from demand flexibility.

The energy assets considered under this project are:

Hybrid Heating Systems (HHS) consisting of an electrmalgred heat pump (either air
source or ground source) together withfassitfuel boiler (oil or gas), which together
provide the heating and hot water requirements of the home;

Solar Photovoltaic (PV) panels;
Domestic Batteries;
Electric Vehicle (EV) chargers witkdbectional capability.

This document provides a summanf/ the work that PassivSystems has carried out under the
MADE project to date. This work includes:

Analysis and utilisation of previous project data sets, in order to infer insight into
individual asset useSge Section)2

High level demand profile modilg, in order to identify issues resulting from
uncoordinated asset use and potential solutions to these isstes Gection)3

Market research, to determine appropriate LCT providers which can facilitate the
required control, for use in the MADE projdéve home trial Gee Section)4
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2 SUPPORTING DATASETS

PassivSystems have carried out analysis of the data from three previous major projects to
facilitate the modelling carried out under the MADE project. These projects were:

Electric Nation whiclobked at smart charging of electric vehicl&&¢é Section 2.1
SolLa Bristol which looked at integrating battery storage with PV paBets$ection 2.2
FREEDOM which looked at hybrid heat pungee(Section 2.3

These projects investigated in isotati the individual LCT assets that the MADE project is
combining together, so the starting point of the MADE modelling exercise was to understand the
conclusions from each of these projects and analyse their datasets to get insight into the MADE
scenarios.

2.1 Electric Nation 1

Electric Nation was an Ofgem funded Network Innovation Allowance (NIA) project hosted by
Western Power Distribution (WPD), in partnership with EA Technology, DriveElectric, and Lucy
Electric Gridkey. The project aimed to improve ursiending of the impact of home electric
vehicle charging on electricity distribution networks, and show how demand management using
smart chargers could be an alternative to network reinforcement.

The project consisted of three different trials over aipdrof three years:

Trial  Smart charging;
Trial 2 Smart charging + use of an app;
Trial 3 Smart charging + use of an app + time of use incentives.

Two different demand control providers were utilised during the project; GreenFlux and
CrowdCharge. Pregt participants were assigned to one of these two providers on a random
basis. GreenFlux participants were provided with an Alfen Eve Singli@®smart charge point,
and CrowdCharge participants were provided with an APT Security Systems eVolt Sitox W
charger.

PassivSystems have carried out extensive analysis of the Electric Nation dataset to understand
patterns of EV usage and feed into the overall project designs. In the sections below we provide
the details of our analysis and also summatis€ S LINR 2SO0G Qa 2y O2y Of dza A

2.1.1 Data Overview

A total of 150,105 charging transactions were supplied to PassivSystems in the Electric Nation
dataset. For each charging transaction, the following information was supplied:

Charger ID;
Vehiclebattery capacity;

L Electric Nation The Project, Electric Nation [ONLINE] Availablatgt://www.electricnation.org.uk/about/the
project/. [Accessed 28 May 2019].
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Vehicle nominal charge rate;
Time of connection;

Time of disconnection;
Consumed energy.

An estimated charge duration was then calculated for each charging transaction, assuming that
the vehicle charged consistently at its nominal chawage.
O1 b 04 & I0TWD | & ME 08 Qi | 0 QD
l ﬁib) I syr v Ty Tt 1 A 0
0 ¢ a Qas@a QG 0@
Of the 150,105 supplied charging transactions, a total of 11,977 were deemed to be anomalous
transactions, and were removed from the data set prior to analysis. These anomalous
transactions matched one or more of the following errors:

Energy consumed exceeded vehicle capd@1¥93 transactions)

Estimated charge duration exceeded connection diora(4,429 transactions)
Connection duration was less than fifteen minu{@26 transactions)
Duplicate transactioii3,765 transactions)

A breakdown of the remaining charging transactions is shown below in Table 2.1. These charging
transactions were ulised for the analysis discussed in Section 2.1.2.

Trial 1 Trial 2 Trial 3 Not linked Total
to a Trial
GreenFlux 22,293 19,401 9,628 25,941 77,263
CrowdCharge 25,635 11,895 5,566 17,769 60,865
Total 47,928 31,296 15,194 43,710 138,128

Table 2.1- Breakdown of Electric Nation transactions used in analysis for the MADE project

2.1.2 Detailed Analysis

The Electric Nation data was analysed in order to gain insight into typical EV charging behaviour,
specifically focusing on the following:

Connection Duration $ee Section 2.1.3;1
Charge DurationSee Section 2.1.3;2

Time of ConnectiorSee Section 2.1.3;3
Vehicle State of Charg8ée Section 2.1.3.4

Results in this section are obtained through analysis of the Electric Nation dateitsegntirety,

with the exception of anomalous transactions, as identified in Section 2.1.1. The data has been
analysed to ensure that there is consistency between the two demand control providers and
across the various trials, in order to validate thpgproach for the purposes of the MADE project,
see Appendix 1.
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2.1.2.1 Connection Duration

The analysed Electric Nation charging transactions displayed a wide range of connection
durations. Figure 2.1 shows that during the Electric Nation trial, EVes tyeically connected for
between thirty minutes to four hours, or between nine and sixteen hours, in a single charging
transaction. Transactions with short connection durations are likely to represenipagharges
where the EV is needed directly aftenacging, and the transactions with longer connection
durations are likely to represent overnight charging.

Connection Duration
(Mean connection duration: 13:13:40)
(Median connection duration: 11:55:00)
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Figure 2.1- Distribution of connection durations during the Electric Nation trial

Figure 2.2 shows the breakdown of connection durationsPiagin Hybrid Electric Vehicles

(PHEVSs), which typically have smaller battery capacity, and Battery Electric Vehicles (BEVS),
including Range Extenders (REXs), which in general have a larger battery capacity. It can be seen
that both vehicle types displafe two peaks observed in Figure 2.1 at shorter connection

durations of between 30 minutes and four hours, and larger connection durations of between

nine and sixteen hours. In the case of PHEVS, the shorter connection duration peak was slightly
larger than the longer connection duration peak, with the opposite true for BEVSs.
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Connection Duration - PHEVs Connection Duration - BEVs
(Mean connection duration: 12:16:56) (Mean connection duration: 14:07:35)

(Median connection duration: 11:42:00) (Median connection duration: 12:06:00)
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Figure 2.2 Distribution of connection durations during the Electric Nation trial (PHEV/BEV Breakdown)

2.1.2.2 Charging Duration

Charge duration was estimated as outlined in Secfdl.1. The estimated charge duration for
the Electric Nation charging transactions was typically less than three hours, as can be seen in
Figure 2.3.
Estimated Charge Duration
(Mean charge duration: 01:57:25)
(Median charge duration: 01:41:00)
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Figure 2.3 Distribution of estimated charge durations during the Electric Nation trial
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Figure 2.4 sows the breakdown of charge durations for PHEVs and BEVSs. It can be seen that all
estimated charge durations for PHEVs are less than four hours, with the vast majority less than
three hours. Whilst the majority of BEV estimated charge durations areeddsdHan three
hours, there are a greater proportion of charges lasting greater than three hours than
represented in the overall distribution shown in Figure 2.3. Based on these observations,
charging duration should be considered in relation to vehicfgacay for the purposes of
project MADE.

Estimated Charge Duration - PHEVs Estimated Charge Duration - BEVs

(Mean charge duration: 01:29:55) (Mean charge duration: 02:23:33)
(Median charge duration: 02:01:00)
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Figure 2.4 Distribution of estimated charge durations during the Electric Nation trial (PHEV/BEV Breakdown)

Through discussion between the MADE project partners, it has been agreed that EV modelling
considered nder the MADE project will be based on a 33 kWh, 7 kW battery, since this was the
most common EV battery type found in the Electric Nation dataset. There were 20,445
charging transactions matching an EV of this description contained in the data. Figure 2
shows the distribution of estimated charge durations during the Electric Nation trial for vehicles
with a 33 kWh, 7 kW battery. Since a battery of this nature would take approximately 4 hours
and 43 minutes to fully charge, Figure 2.5 suggests trav#hicles considered are typically not
fully charging, with a mean charge duration of just over two hours.
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Estimated Charge Duration
(Mean charge duration: 02:02:45)
{Median charge duration: 01:57:00)
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Figure 2.5 Distribution of estimated charge duration for 33kWh, 7kW vehicles during the Electric Nation trial

During Electric Nation, vehicldsl not typically charge for the whole duration that they remained
connected to the charger. Figure 2.6 shows that vehicles were typically only charging for less than
thirty percent of the time they spent plugged in. This suggests that there is a largenarof

scope for demand management of EV charging to be executed.
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Figure 2.6 Distribution of percentage of connection duration spent charging during the Electric Nation trial
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2.1.2.3 Time of Connection

During the trial, vehicles were primarily plugbe to the charger in the evening. Figure 2.7 shows
that vehicles were most commonly plugged in between 17:00 and 19:30. This timing is likely to

coincide with heating demand, supporting the requirement for demand management.
Time of Connection
(Mean Time of Connection: 16:54:36)

(Median Time of Connection: 17:44:00)
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Figure 2.7 Distribution of time of connection during the Electric Nation trial
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Figure 2.8 shows connection duration against time of connection. It can be seen that
connection durations of less than seven hours occurred throughout the day, predominantly
between 07:0Gand 20:00. Longer connection durations of between seven and fourteen hours
typically occurred during the evening, after 16:00.
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Figure 2.8 Connection duration against time of connection during the Electric Nation trial
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2.1.2.4 Vehicle State of Charg®®

There was a large amount of variation in battery SOC increase per charging transaction during
the trial, as can be seen in Figure 2.9. This suggests that vehicles are likely to have a wide range

of remaining SOC uponmoection. A small peak can be seen between 69% and 88% SOC.

State of Charge Increase (%)
(Mean SOC Increase: 50.5)

(Median SOC Increase: 50.9)
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Figure 2.9 Distribution of state of charge increase during the Electric Nation trial

Figure 2.10 shows the breakdown of state of charge increase for PHEVs and BEVSs. It can be seen
that the peak in overall distribution, as shown in Figure 2.9, is entirely down to PHEVS, which
typically charge between 69% and 88% in a single transaction. This high state of charge increase
is expected due to the hybrid nature of the PHEVs eliminating range gnttietefore EV

drivers allowing their vehicles to reach a lower state of charge . BEVs however typically charge
less than 60% in a single transaction.

State of Charge Increase (%) - PHEVs State of Charge Increase (%) - BEVs
(Mean SOC Increase: 60.1) (Mean SOC Increase: 41.4)
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Figure 2.10 Distribution of SOC increase during the Electric Nation trial (PHEV/BEV Breakdown)
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2.1.3 Electric Nation Dataset Conclusions

2.1.3.1 PassivSystems Analysis Conclusions
Ly adzYYFINEZ GKS F2fft2¢gAy3 20aSNBIFGAZ2ya OlFly oS
dataset:

EVs were typically connected for between thirty minutes to fowrspor between nine

and sixteen hours, in a single charging transaction;

The estimated charging duration per transaction was typically less than three hours;

EVs were most commonly plugged in to the charger in the evening, between 17:00 and
19:30;

There vas a large amount of variation in battery state of charge increase per charging
transaction, particularly for BEVs. BEVs typically underwent a SOC increase of less than
60%;

The most common EV battery configuration found in the dataset was a 33kWh battery
able to charge at 7kW.

2.1.3.2 Additional Electric Nation Project Conclusions
The following conclusions have also been evidenced by the Electric Nation project team:

Trial data shows that there is scope for flexibility, particularly during the evenink pea
which aligns well with highest network demand;
Demand management is technically feasible, and is acceptable to the majority of trial
participants;
Trial data shows that Time of Use (ToU) incentives appear to be highly effective at moving
demand away fronthe evening peak;
Without management, ToU incentives could lead to large peaks when electricity becomes
cheap;
Smart charging can:

- Support the introduction and management of ToU based charging;

- Provide a means to manage any negative consequences of rptssewf ToU

incentives.

2.1.3.3 Overall Conclusions

The analysis of the dataset discussed in Section 2.2.2 of this report couplethes Electric
Nation project conclusions show there is clear scope for demand management, particularly
during the evening peak. The trial also demonstrated that ToU incentives were effective in
moving demand management from the evening peak, howeveal tdata suggests that
coordinated control between households may be required to manage the consequences of mass
uptake of ToU incentives and prevent the introduction of new charging peaks. Overall, these
conclusions provide strong support for MADE contiidle Electric Nation data also provides a
good foundation for the generation of a typical EV charging profile to feed into the MADE
modelling work.
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2.2 SoLa Bristol 2

SoLaBristol (Buildings, Renewables and Integrated Storage, with Tariffs to Overcome network
Limitations) was a project hosted by WPD, in partnership with Bristol City Council, the

University of Bath, Knowle West Media Centre, and Siemens, funded through Qf@em[ 2 &
Carbon Networks (LCN) Fund. The project aimed to address the technical constraints that DNOs
(Distribution Network Operators) expect to arise on Low Voltage (LV) networks as a result of
the adoption of solar PV. In particular, the project considenew battery storage could assist

with network management, in addition to saving customers money on their energy bills.

Sola Bristol involved twenty six homes, which had 4.8 kWh of battery storage installed
alongside solar PV panels ranging from 1.5 ki kWp. The PV panels were connected

directly to the battery using a 2kW DC/DC converter, with a 2kW inverter to convert DC power
to AC. Each home also had a DC micro grid installed that ran from the battery, providing lighting
and USB charge points.dddition, each home was connected to the local electricity network

to allow excess energy to be exported to the grid at peak times. Participants were provided

with a pseudo variable tariff, which encouraged electricity use at times of high PV generation
and battery use when the network was heavily loaded. During the project, the battery was
shared between the participant and the DNO. The DNO was able to charge and discharge the
battery to help with network management.

PassivSystems have conducted analgkthe SolLa Bristol dataset to identify whether it is
suitable for use in the MADE modelling to represent typical battery and solar PV operation.

2.2.1 Data Overview
Data for eleven homes has been analysed, running from December 2014 to Februaryd016. F
each home, minutely and 3®inutely data was supplied for the following:
Battery current (A);
Battery voltage (V);
Battery temperature (°C);
PV Current (A);
Household AC Current (A);
Household AC Voltage (V);
Household AC Power (kW);
Current flow betveen DC and AC (A).

The eleven included homes and their corresponding load types can be seen in Table 2.2. The load
types are described as follows:

230La Bristol, Western Power Distrion [ONLINE] Available atttps://www.westernpower.co.uk/projects/sola
bristol. [Accessed 28 May 2019].
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Normal: Considered to be similar to a typical natiewale profile, usually with a high
evening peak;

Highdaily load: High demand in the daytime instead of high demand peak in the evening;
Economy 7: Properties with a dual tariff system, often high overnight demand.

Home Number Load Type

06 Economy 7

07 Economy 7

13 Normal

15 High daily load
16 Normal

20 Normal

21 Normal

22 Normal

23 Normal

24 Normal

26 High daily load

Table 2.2- Homes included in the SoLa Bristol dataset and their load types

PV power was not included in the data set, only PV current. However since the Pdttarg
systems were directly coupled on the DC side of the inverter, PV voltage is assumed to be the
same as battery voltage. Therefore, PV power has been calculated as the product of PV current
and battery voltage. It can be seen from Figure 2.10 thatdhlculated PV power aligns with
examples of PV power for homes 15 and 16 on the 15th April 2015 from the SolLa Bristol Final
Reporé, providing confidence in this approach.

3 SoLa Bristol SDRC 9.8 Final Report, Western Power Distribution, Jariiary 20
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Figure 2.10 Calculated PV power against actual PV power for homes 15 andnl®5th April 2015
2.2.2 Data Analysis

2.2.2.1 PV Generation

PV generation was analysed for all eleven homes. It can be seen from Figure 2.11 that, as
expected, PV generation is higher across the summer and lower during the winter. It can also be
seen thatthere are a number of gaps in the PV generation data. Some of the homes are missing

PV readings from towards the end of the summer months onwards.

2 . . . Home 06
Home 07

1.8 L Home 13
Home 15

‘ Home 16

1.6 Home 20
| Home 21

1.4r 1 Home 22
Home 23

1.2 Home 24

Home 26

PV Power (kW)
=

[=]
[2+]

0.2 F | . Ml
\ iy |MH“|J|
0 i
Jan 2015 Apr 2015 Jul 2015 Oct 2015 Jan 2016
Figure 2.1% PV generation across the SolLa Bristol data set for all eleven homes

It can also be seen frno the data that a number of homes (13, 15, 21, 22 and 24) display much
lower PV generation than expected for a 1ZkWp solar installation, remaining relatively
consistent throughout the day, as displayed in Figure 2.12 which shows PV generation on the
19th June 2015. It can also be seen from this Figure that a sharp change in PV power can be
observed at the start and end of each day. This is not in line with what we would typically
expect to see, and may potentially be down to some sort of system fault.
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Figure 2.12 PV generation on 19th June 2015 for a selection of homes

2.2.2.2 Battery State of Charge (SOC)

During the SolLa Bristol trials, upper and lower thresholds were set for the battery state of charge,
outside of which the battery was not able tieeely charge and discharge, as can be observed in
Figure 2.13. Above the maximum SOC threshold, the battery was reserved for DNO use, should
they require to push excess power to the battery. However the minimum SOC threshold worked
slightly differently,and was the lower limit for all standard battery operation. The system would
only support a pull request from the DNO if there was sufficient spare capacity above the
minimum state of charge. The minimum SOC threshold was in place to support the project ai
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Figure 2.13 Battery SOC across the SolLa Bristol data set for all eleven homes
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These battery state of charge constraints lead to oscillations in battery state of charge around
the limits of operationas can be seen in Figure 2.14 for Home 20. These oscillations are due to
the battery entering an imporexport cycle to prevent the state of charge violating the

boundary conditions that are being imposed. We can again see clearly from this figureghat th
battery is unable to reach anywhere near 0%, with a lower state of charge threshold of around
50%.
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Figure 2.14 Battery SOC oscillations at the SOC thresholds for Home 20 on 9th May 2015

It can also be observed from the data that some homes expegiameduction in state of

charge over the summer months, an example of which is shown in Figure 2.15 for Home 22.
This is not in line with expectations, since it would be expected that increased PV generation
across the summer months combined with typidatreased consumption during these months

would lead to a higher battery state of charge in general.
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Figure 2.15 Battery SOC for Home 22

200f 50

WWW.passivsystems.com



http://www.passivsystems.com/

@

P3SSIVSYSTEMS

Further analysis of Home 22 has been conducted across these summer months that
demonstrate a lower than expectedatiery state of charge. It can be seen from Figure 2.16
there there is no reduction in PV generation across this time period that would explain the
reduced SOC. It has also been investigated whether this reduction in SOC was due to an
increase in batteryemperature leading to a reduction in battery performance. It can be seen
from the third plot in Figure 2.15 that the battery temperature was in fact higher in August,
when the battery SOC had recovered to a higher value, than in May, when reduced SC can
observed. Therefore the reduction in SOC cannot be explained by an increase in battery
temperature.
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Figure 2.16 Investigation into the reduced state of charge displayed for Home 22 over the summer months
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It can therefore be concluded that this olssed reduction in battery state of charge is likely
due to DNO control over the battery and a variation in the implemented control strategy.

2.2.3 SoLa Bristol Dataset Conclusions

Due to DNO control over the battery during the project, with varying state of charge limits
throughout the year, the SolLa bristol data is not a typical representation of domestic battery
use across the year, and it is therefore difficult to deduce insigbttypical seasonal behaviour
from the data.lt is therefore not ideal for direct use in order to represent a typical annual
household battery profile for use in Project MADE. Additionally, gaps in solar data, alongside a
lack of orientation data regardgthe installations, mean that the solar data is not ideal for use
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in forming typical PV generation data for use in the MADE modelling. Solar generation profiles
for the MADE modelling have therefore been determined through analysis of relevant homes
fromt  AaAPQa a2t NI Y2YAG2NRAY I LRNIOTF2fA23 & RAA

2.3 PassivSystemsoO6 Solar Monitoring Portfolio

PassivSystems monitor over 40,000 solar installations across the UK. Analysis has been conducted
on this solar dataset to determine suitable repentative solar generation profiles for use in the
MADE modelling.

The dataset was first analysed as a whole to determine the typical kWp values and orientations
contained in the dataset. Analysis was also performed only considering South Wales hooges, si
this is a key area of interest for Project MADE and FreeVE. A summary of these results can be
seen below in Table 2.3.

Region Parameter Mean Mode

South Wales North Orientation See Figure 2.17 for distributior] 270.00°

(1,458

installations) Horizontal Orientation | 31.51° 30.00°
kWp 4.07 kWp 4.00 kWp

United Kingdom | North Orientation See Figure 2.18 for distributior] 180.00°

(44,873

installations) Horizontal Orientation | 32.14° 30.00°
kWp 3.27 kWp 4.00 kWp

Table2.3t I daA@{eaisSyaQ az2ftF NI Y2YAG2NAY 3 LERNITF2tA2 adzyYl NB

South Wales Homes - North Orientation All Homes - North Orientation
Mode: 270° Mode: 180°
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Figure 2.17 South Wales homes north orientation Figure 2.18 All homes north orientation
distribution distribution

The customer/household typéshat have been agreed by all project partners for use in the

MADE modelling have solar installations of 1, 2 and 4 kWp. A number of suitable solar generation
profiles from solar installations of these sizes were thus extracted from the data set, taking into
a002dzy it 2NASYGFGA2Y LI NI YSGSNE RNIgy TFNRBY GKS
modelling under the MADE project. These profiles were also provided to Everoze for use in their
domestic level techn@conomic modelling.

2.4 FREEDOM s

FREEDOM (Kible Residential Energy Efficiency Demand Optimisation and Management) was a
NIA funded crossector collaboration between electricity and gas distribution networks Western
Power Distribution and Wales & West Utilities, who engaged PassivSystems to tihelipeject,
supported by partners Imperial College, Ded®aand City University. The aim of the project was

to investigate the network, consumer and broader energy system implications of high volume
deployments of hybrid heating systems.

The FREEDOM project yielded a valuable dataset of the hybrid heating system performance
across 75 trial homes. However, the dataset is not directly suitable for MADE purposes as the
homes were on a mains gas supply, and not receiving RHI (Renewable Hedéh@ayments,

so the heat pumps were not utilised as much as would be expected in a future decarbonised
KSIFGAYy3a aO0OSYyINA2 O6gKAOK Aad 6KSNBE a!59Qa 7F20dz
FREEDOM to develop models that extrapolate to this scemtmdoA Y3 t F daA-@{ 8adGSy
building physics model.

Following the FREEDOM project, PassivSystems have developed an annual forecasting tool,
enabling the gas and electricity demands of a hybrid heating system to be modelled, in order to
provide heatLJdzY L) RSYIl yR LINBFAf Sa FT2NJ dzaS Ay (GKS a! 59
depth knowledge of heat pump operation, developed through the FREEDOM project, in
conjunction with weather data, user defined schedules/setpoints, learnt thermal properties o

the house and tariff information to look ahead in time and predict how the heat pump and boiler

will behave in tandem to deliver householder comfort whilst minimising the cost. Energy
predictions for each half hourly period within a given year are thetarned, estimating the
performance of a particular FREEDOM home in the MADE scenario.

Using this annual forecasting tool, a selection of optimised 2018 heating profiles were generated,
based on appropriate FREEDOM homes for use in the MADE modelling pfbidss were also
provided to Everoze for use in their modelling. A total of ten FREEDOM homes were used to
generate the heat profiles. For each home, profiles were generated using the following methods:

4 MADE Project: Customer Segmentation, DekaMay 2019

5 FREEDOM, Western Power Distribution [ONLINE] Available at:
https://www.westernpower.co.uk/projects/freedom[Accessed 28 May 2019].

230f 50

WWW.passivsystems.com



http://www.passivsystems.com/
https://www.westernpower.co.uk/projects/freedom

)

O3SSIVSYSTEMS

Use Real Set Point3he profiles generated vidis method utilise actual set points for

each particular home, as set by the user, therefore these may vary throughout the year

as the user makes changes. In this case, optimisation will take into account future
overrides carried out by the user, whichslzb Ry Q& | QG dz- t €& 0SS (1y26Yy
optimisation.

Use Home Occupancy ScheduRrofiles generated through this method will use the

actual home occupancy schedules, and will not take into account manual overrides in the
optimisation.

Use Alteral Daytime Occupancy Schedul®@rofiles generated through this method will

use altered home occupancy schedules, which assume day time occupancy.

Through the FREEDOM project, Passiv have also gained knowledge on consumer acceptance of
hybrid heating systeroperation, and therefore what demand management interventions may
be acceptable to consumers. This will help to shape the MADE control strategy.
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3 MODELLING

PassivSystems have carried out an internal programme of modelling to explore the interrelations
0SG6SSy GUKS 26 OIFINb2y laaSdiao ¢ KS JLaBINE I OK
Modelling but is more closely tied with PassivSystems models, that will be used in the field trial.

We were also keen to understand the more detailed relationshyetween the assets and

explore directly some of the elements of coordinated control that are going to be tested live in

the field trial.

3.1 Modelling Approach

The modelling approach first involved generating typical demand profiles for the technology
assets considered under the MADE project when operating in isolation. These baseline individual
profiles were then layered to obtain a typical whole household system demand profile, which
was then analysed in order to gain awareness of potential demand el and to obtain
insight into potential flexibility which could offer a solution to these problems.

The individual profiles utilised in the modelling were generated as shown in Table 3.1. The asset
configurations used in the modelling align with the thigemand, high EV use (Commuter)

Odza 12 YSNJ G@LIS dzaSR Ay 9eddhdmixim8daling. Rne M&allingwds f S S
carried out across a whole year on a Hatlurly basis, using 2018 data, and utilises the variable

tariff supplied by Everoze, m&€chA y 3 G KS GF NAFF dziAft AaSR Ay 9 @SN
Profile Source Modelling asset configuration
Heat pump | Example annual profiles of heat pun Heating system: Hybrid heatin
demand demandfor a high, medium and loy system (air source heat pump + g
demand home were generated K boiler)
utilising FREEDOM data for relevq Power: 2kW
K2YSa I £ 2y 34 A RS | Heating demand: High
forecasting tool. It should be notel Daytime occupancy: Yes
that when using this tool to optimise| Assumptions: Optimised based
hybrid heating system, the heatif A y LJdzi G F NAFTF  dz3
profiles are notyet optimised againg forecasting tool, as discussed
solar generation. Forecasting w| Section 2.4.
performed in line with the annual co{
of energy supplied by Everoze.
Solar Example annual solar generation kWp: 4kWp
generation profiles were extracted from relevan{ North orientation: 180°
K2YSa FTNRBY t | &aA |Horizontal orientation: 35°
portfolio.
EV charging | Example annual EV charging demar| EV battery capacity: 33kWh
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demand

profiles were supplié by Deltaee.
These profiles were based on the
Electric Nation dataset, alongside
responsesto Deltd S Q& a'!
around EV charging habits.

5

Charge power: 7kW

EV demand: HighW/ 2 YY dzii S
case including weekdaspmmute
and weekend visits to friends and
family (See Figure 3.1 for EV usagg
pattern).

Charging assumptions: Unmanage
EV chargingthe vehicle charges
whenever it is plugged in and has
spare capacity.

Base
household
electricity
consumption

Example anual base household
consumption data was supplied by
Deltaee. This data was drawn from
the Powering the Nation dataset.

Electrical demand: High

Battery
Demand

Battery demand was simulated using
solar generation and total
O2yadzyYLIiA2y s &t 2]
knowledge of battery operation and
discussions with the battery
manufacturers.

Capacity: 10kWh

Inverter power rating: 3.3kW
Charging assumptions: Battery
charges when there is excess solaf
generation and discharges to meet
excess household consumption.

Table 3.1- Data sources for the individual profiles used in the modelling

Figure 3.1 shows the commuter EV uspg#tiern which has been used in the modelling, showing
when the EV is connected to the chargepoint. For this usage pattern, it has been assumed that

the EV is connected to the charger for the duration of time spent at the household.

Figure 3.1- Commuter EV usage pattern used in the modelling, showing when the EV is connected to the

chargepoint.
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3.2 Whole Household System Demand Modelling

The individual demand profiles discussed in Section 3.1 were then used to generate a whole
system househouse profiléleat, EV charging and base electricity consumption profiles were
combined to generate total household demand. This total demand was then utilised in
conjunction with solar generation to simulate battery power, before the remaining required grid
import wascalculated.

3.2.1 Baseline Profile

For the baseline case we consider-ecoordinated low carbon assets. The modelled baseline
household grid import demand (including heat pump heating) can be seen below in Figure 3.2.
The heat pump provides as muohthe heating as possible (with the boiler topping up only in
the coldest weather), but does not react to solar generation or coordinate with the battery; it
does however shift demand against the varying ToU tariff. The battery charges when there is
excess solar and discharges to meet excess household consumption (including the heat pump
which is not distinguished from other electrical load). The following observations can be made:

The annual net total cost of electricity is £1,598. This consists of @ in6nport costs

and £22 in export revenue.

As expected import demand is higher during the winter months and lower over the
summer. This is primarily down to increased heating and reduced solar generation during
the winter.

Export occurs only during thruimmer months.

¢2 fft26 FT2NJ O2YLI NRazy gAGK 9O0SNRI SQa olasS O
also been generated for the case with no battery storage, as can be seen in Figure 3.3. This
matched closely to the import profile generated by B 1 S F2NJ 6 KS a1 AIKZ [ 2)
where a net total cost of £1,727 is comparable to the Passiv model cost of £1,721. However, for

the duration of this report, the baseline case is assumed to be that described by Figure 3.2, with

the inclusion of a bizery.

Total Cost: £1598 per year

12

Grid Import Power (kW)

4 I . I I . . I . . I I
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2018

Figure 3.2 Baseline grid import profile (with battery) Figure 3.3 Grid import profile (No battery)
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