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Executive Summary  

Background 

The OpenLV Project trials an innovative new open access platform that was developed by 
EA Technology.  

Uniquely, the OpenLV platform provides a 
substation monitoring and operating system 
(EA Technology’s LV-CAP™) that has been 
designed to be hardware agnostic and, in a 
Method analogous to a smartphone, to be 
able to host multiple apps.  The trial system allows hosted apps to share monitored data 
and each other’s outputs. LV-CAP™ was designed so that calculations and decisions can be 
made locally, speeding up reaction times and reducing the amount of data that needs to be 
sent to central aggregation servers. It provides a secure environment for the maintenance 
and management of apps, while continuing to ensure the security of the electricity network.   

The OpenLV trial 

The OpenLV Project is seeking to prove the technology 
and assess how it enables benefits to the DNO 
(Distribution Network Operator), community groups, 
business’s and academia. 

The trial was organised to: 

• Investigate the benefits of decentralised analysis and LV network automation 
through Method 1 of the trial 

• Investigate how OpenLV enables community action through Method 2 of the trial 

• Investigate how OpenLV creates new opportunities for business and Academia 
through Method 3 of the trial 

Further information on the overall project can be found in the Full Bid Submission, which is 
available on the OpenLV Project website [1]. 

Report Purpose  

In this report we present the results and learning from Method 1, with the learning 
associated with Method 2 and Method 3 detailed in linked reports as part of SDRC 4. 

Subsequent reports will analyse the opportunities and benefits of implementing the 
platform into business as usual. 

 
  

The OpenLV platform  

• Enables Open Data 

• Hardware and Software agnostic 

• Decentralised analysis and control 

 

 

This trial opened access to 
100 Million data points from 
80 substations. 

 

 



 

 

 Page 8 of 76  

SDRC 4 
LEARNING GENERATED FROM THE OPENLV PROJECT TRIALS 

Key Findings 

Within this report we outline the following key findings from Method 1 that investigated 
the capability of the LV-CAP™ platform to provide direct network benefits. 

• The OpenLV trial demonstrated that decentralised analysis and control was able to 
present a robust Method of automation for the Low Voltage network. This output 
was evidenced by the fact that OpenLV enabled the trial low voltage networks to be 
physically reconfigured at times of simulated network stress. 

• To enable this trial of network automation, the trial LV networks were configured to 
enable LV substations to be meshed together by closing a smart LV network device 
that was located at one of the substation pairs, in effect joining them together via an 
LV feeder. This was a slightly artificial arrangement as, in Business as Usual (BAU), LV 
networks are normally sectionalised at link boxes located between the two 
substations. 
 
This trial demonstrated that temporarily meshing together two substations in this 
manner, was an ineffective Method to de-load substation transformers. However, 
the trial also presents evidence that had OpenLV been able to implement  load 
sharing capability through alternative configuration of the automated switches there 
was the potential for more network uplift. Smart link boxes were not available cost-
effectively for the OpenLV Project at the time of project initiation, and this may be a 
significant follow up point from the project, partly as it would enable great capacity 
uplift and also because it would allow novel use cases to be implemented by the LV-
CAP™  platform such as automatically restoring customers after an LV fault. 

• The Method 1 trial also investigated decentralised computation of the amount of 
capacity headroom available at LV transformers. This was investigated by trialling a 
real time rating calculation that constantly forecasting the capacity available on the 
transformer based on real time measurements of transformer temperature and load 
duration. This calculation was subsequently made available to other apps that served 
the interests of Method 3 participants. 
 

This part of the trial demonstrated that there 
could be a significant capacity benefit from 
applying real time rating analysis to LV 
transformers rather than assigning a rating 
based on fixed or less periodic updates to 

rating assumptions. This benefit was estimated at 6350MVA of capacity uplift across 
39,500 of WPD’s 140,000 LV substations.  
 
Whilst it is possible in theory to implement this analysis using centralised 
computation, establishing sufficiently robust communications between central 
locations and large quantities of LV substations is an expensive undertaking, prone to 
potentially harmful communications faults. 

  

Having a decentralised 
computation capacity could enable 
6350 MVA of capacity uplift across 
WPD’s four license areas. 
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1 Introduction 

1.1 Project Background 

Great Britain has about 1,000,000 Low Voltage (LV) feeders; these have largely been 

designed and operated on a fit-and-forget basis for the last 100 years, but things are set to 

change. LV networks are expected to see radical change as we, as customers, alter our 

behaviour and requirements, stemming from the vehicles we drive, to the generation and 

storage devices we put onto and into our homes.  

The technology to be trialled as part of the OpenLV Project provides a new, open and 

flexible solution that will not only provide the DNO, community groups and the wider 

industry with data from the LV network, but will also enable these groups to develop and 

deploy apps within LV substations through a common hardware platform. The OpenLV 

Project is seeking to prove the technology and assess how the provision of LV network data 

and the ability to develop and deploy apps can provide benefits to the DNO, community 

groups and the wider industry. These Methods used to achieve this objective are outlined 

below. 

 

1.1.1 Method 1: Network Capacity Uplift 

Figure 1 provides an overview of the systems architecture that will be deployed to complete 

Project trials for Method 1 – Network Capacity Uplift. 

As part of the Project trials for Method 1, apps will be used to increase the capacity of 

existing LV assets through the application and implementation of Dynamic Thermal Rating 

of the LV Transformer and through meshing LV feeder(s) on the LV network.  

 

Figure 1: Method 1 – Network Capacity Uplift 

LV Feeder LV Feeder
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circuits

• Deploy LV-CAP™ to 60 substations

• Monitor how the solution would operate 
over several months
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to prove end-to-end control

• Assess and report on performance

What

• Check network capacity against thermal 
rating of transformer; when breached, 
close two radial circuits to mesh the LV 
network

• Deploy two proven techniques 

– ‘Dynamic Thermal Ratings App’ and 

– ‘Network Meshing App’.

• Together with a ‘Network Control App’ to 
operate/configure the network

Transformer

Monitoring

Network
Automation

OpenLV
Platform

Cloud 
communications

Normally 
Open Point

Transformer

Monitoring

Network 
Automation
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Platform

Comms Comms

HV/LV Substation HV/LV Substation
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1.1.2 Method 2: Community Engagement 

Figure 2 provides an overview of the systems architecture that will be deployed to complete 

Project trials for Method 2 – Community Engagement.  

As part of the Project trials for Method 2, Community Groups will make use of the LV 

network data provided by the OpenLV Platform to provide benefits to Communities. 

 

Figure 2: Method 2 – Community Engagement 

1.1.3 Method 3: OpenLV Extensibility 

Figure 3 provides an overview of the systems architecture that will be deployed to complete 

Project trials for Method 3 – OpenLV Extensibility.  

As part of the Project trials for Method 3, the Wider Industry will either, make use of the LV 

network data provided by the OpenLV Platform, and/or develop and deploy ‘apps’ to 

provide benefits to: DSOs (Distribution System Operator), Platform Providers, 3rd Party 

Developers and Customers. 

 
Figure 3: Method 3 – OpenLV Extensibility 
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1.2 Document Purpose 
The OpenLV Project Successful Delivery Reward Criteria 4(SDRC) report 4 was structured to 

meet the evidence requirements outlined in the OpenLV Project Direction [2]. 

The primary SDRC 4 report was issued to Ofgem as a single document, detailing the 

evidence relating to Methods 1, 2 and 3 of the OpenLV project. 

1. Sharing the level of capacity uplift achieved through Method 1 
2. Sharing which LV networks can benefit from OpenLV and why 
3. Establishing the level of capacity uplift that could be achieved in WPDs licence area 
4. Sharing how DNOs can engage with communities who want to become part of a 

smarter grid to exploit the open and flexible nature of OpenLV 
5. Sharing how community engagement supports the uptake of LCTs (Low Carbon 

Technologies) 
6. Outlining the routes communities can take to raise funding 
7. Sharing the network benefits provided by community engagement 
8. Sharing how DNOs can engage with academics, companies (including non-energy 

companies) to exploit the open and flexible nature of OpenLV 
9. Sharing the network benefits provided through Method 3 
10. Sharing how the Method facilitates non-traditional business models 

In this document we present the results and learning relating to Method 1, with matching 

documents available for Methods 2 and 3. 

 

1.3 Report Structure 
The structure of this report is as follows: 

• Section 2: Method 1: Capacity Uplift – demonstrates the ability of EA Technology’s 

LV-CAP™ platform to deliver network benefits 

• Section 3: Conclusions - outlines how the project has met the Successful Delivery 

Reward Criteria as set out in Section 1.2 
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2 Method 1 – Capacity Uplift 

2.1 Principles of the Method 1 Trials 

Fundamentally, the purpose of the OpenLV Project was to test and verify the ability of a 
distributed intelligence platform to provide network benefits. Method 1 focussed on the 
potential for direct benefits and deployed two use cases intended to improve transformer 
utilisation. 

The use of locally calculated Dynamic Thermal Rating (DTR) of Network Assets in 
combination with autonomous network switching to adjust load balancing and release 
capacity, demonstrated the ability of LV-CAP™ to  

• Monitor the local network assets 

• Store the data relating to the system operation 

• Process this data, deriving meaningful information 

• Make decisions in response to this processed data 

• Enact the result of these decisions, providing measurable changes to the local 
network 

 

2.1.1 Thermal Rating of the Transformer 

Existing equipment ratings are based on the conservative assumption that the peak load is 
continuously delivered over a prolonged period, thus allowing time for the transformer to 
heat up to its maximum recommended operating temperature. This approach is used to 
determine the ‘nameplate’ rating for the Transformer. This rating being the amount of load 
(in kVA) the transformer can continuously provide in an Ambient Temperature of 20°C. 

In reality, particularly on networks supplying predominantly domestic customers, the load is 
at its peak only for a relatively short period each day whilst also experiencing a continually 
varying Ambient Temperature. Utilising actual loading and thermal data can allow for 
increased loading of the transformer without exceeding acceptable operating 
temperatures, often allowing loads significantly above the nameplate rating of the 
transformer to be achieved at times of peak loading. 

The Transformer Thermal Rating application utilised in the OpenLV Project uses knowledge 
of the previous loading conditions, coupled with the heating and cooling characteristic of 
the equipment, to determine a new dynamic load (rating) that the equipment can safely 
supply without overheating.  
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2.1.2 Meshing the network 

Meshing (joining together or interconnecting) LV substations originally designed to be run 
separately (with open points on feeders between them) has been demonstrated in previous 
Projects to be an effective Method of supporting network assets where an imbalance in 
loading exists in close proximity on the network. Automating meshed operation of the LV 
network, to operate only when required, has the potential to increase capability to support 
higher penetrations of LCTs. 

It is noted that implementation of meshing between LV substations, whether at the NOP 
(Normally Open Point) or at the substation requires consideration of network fault 
conditions to ensure protection systems will operate when required. 

 

2.1.3 Combining the two 

The implementation of DTR and automated meshing by LV-CAP™, using DTR calculations as 
the control signal for meshing automation, demonstrates the ability of the platform to 
deliver the five points detailed above, as the end-to-end process would otherwise not be 
possible. 

 

2.2 Methodology 

The purpose of Method 1 within the OpenLV Project was to demonstrate the ability of LV-
CAP™ to autonomously provide network benefits, without the need for system controllers 
to implement or authorise system actions. 

Further learning from Method 1 comprises an assessment of how much additional capacity 
can be delivered by: 

1. Dynamic Thermal Rating of the transformer 
2. Implementing LV network meshing at the Normally Open Point 
3. Combining both techniques 

This was achieved through gathering data, and demonstrating the implementation of 
control actions through the use of distributed intelligence in a two-stage process: 

1. Deployment of LV-CAP™ enabled platforms in ‘passive pairs’ with monitoring 
equipment and analysis applications, but no ability to control the LV network 

2. Deployment of LV-CAP™ enabled platforms in ‘active pairs’ including enhanced 
decision-making applications and EA Technology’s Alvin Reclose™ devices to enact 
LV network actuation 
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2.2.1 Testing & Data Gathering 

Trial equipment was deployed under Method 1 in two phases; passive monitoring pairs, 
intended for network monitoring and providing data for simulation and analysis, and active 
pairs where the network automation would be implemented as well. 

Phase 1 pairs were considered candidates for subsequent upgrades to becoming an active, 
Phase 2 pair, but during the initial roll-out of equipment sufficient hardware was retained to 
enable additional substations to be utilised if those initially selected proved unsuitable for 
active control. 

The overall process was: 

1. Undertake desktop and site surveys to identify potential trial pair locations 
2. Deploy equipment to 25 pairs for Phase 1 (passive) operation 
3. Evaluate data from these pairs, with a view to upgrading pairs to Phase 2 (active) 

operation if possible 
4. Upgrade sites where possible 
5. Deploy equipment to the remaining 5 pairs, in either Phase 1 or Phase 2 

configuration such that overall, there were 25 Phase 1 pairs and 5 Phase 2 
 

2.2.2 Phase 1 – Passive Pairs 

Network Arrangement 

All trial substations were outfitted with LV-CAP™ enabled distributed intelligence devices, 
LV network monitoring equipment and temperature sensors, but not all were provided with 
the necessary hardware or control software for network automation. 

The LV network arrangement was unchanged, with the NOP between the two substations 
providing separation between the two feeders. The data gathered from the passive sites 
matched that gathered from the active deployments, with the only variation occurring from 
the network layout. 

The substations were assigned Site 1 or Site 2 on the basis of transformer rating and 
proportional loading where the substation with the lowest loading was assigned to be Site 1 
for the purposes of simulating the system operation. See Figure 4. 
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Figure 4: LV network arrangement and LV-CAP deployment 

In total, 50 units were deployed in 25 paired locations in this configuration, across WPD’s 
licence areas, as shown in Figure 5. 

 

Figure 5: Map of units deployed across WPD’s licence areas 
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2.2.3 Phase 2 – Active Pairs 

Network Arrangement 

In the trials, substation pairs selected for the Phase 2 trials were confirmed to be suitable 
for use through evaluation of the network loading, configuration, and detailed fault study 
analysis, with particular emphasis on the impact of required changes to the network’s 
normal operating conditions. 

Neither of the substations in a pair was at risk of overload relative to the transformer’s kVA 
rating, nor was it in danger of overheating whether supplying full load to the 
interconnecting feeder, or sharing the load between both transformers in the pair. As such, 
it was necessary to utilise ‘trigger thresholds’ optimised for ensuring system operation 
rather than asset protection. 

The thresholds assigned in the trial were: 

• Site 2 would ‘request assistance’ if, for the scenario of circuit breaker remaining 
open, the predicted Hot Spot Temperature of the transformer exceeded a defined 
threshold 

• Site 1 would help if requested if, for the scenario of circuit breaker being closed, the 
predicted Hot Spot Temperature of the transformer remained below 65°C 

At Site 1, EA Technology’s Alvin Reclose™ units are controllable by the LV-CAP™ platform 
with the default configuration having the breaker ‘open’ unless otherwise instructed to 
close. 

The Alvin Reclose™ units at Site 2 remains ‘closed’ except in the situation where a network 
fault is detected, in which case the breaker will automatically open to protect the network. 

In all circumstances, the protection of the network is paramount, and the control logic of 
the system is designed to only operate ‘active control’ when doing so is to the overall 
benefit of the local network, and operational safety requirements (e.g. opening breakers in 
the event of a fault) override all other instructions. 

 

Network fault studies 

Full network analysis was undertaken for each network utilised in the Phase 2 trials, 
ensuring that network fault current levels, and fault response times remained within 
acceptable tolerances. The report detailing the network study for each Phase 2 pair is 
located in Annex 1. 

Some pairs initially evaluated were found to be unsuitable for use as an active control pair 
as the network lengths, if being energised from just one substation were such that the 
network fault risked not clearing sufficiently quickly to meet WPD’s operating requirements. 
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Operational process 

The operational process for demonstrating automated control on the LV network is outlined 
below. Note that this process occurs simultaneously at both substations in the pair. 

1. Network data is gathered by the monitoring hardware provided by Lucy Electric 
GridKey 

2. Network data is passed to the LV-CAP™ platform 
3. Asset data, (Transformer Top-Oil Temperature) and Ambient Temperature readings 

are gathered directly by the LV-CAP™ platform 
4. A load forecast application takes the available historical information and predicts the 

load for the transformer, and connecting feeder, for the near future (configured as 4 
hours) 

o This forecast is generated for two scenarios, the first where the circuit 
breaker at Site 1 is ‘open’ for the next 4-hours, the second where it is ‘closed’ 
for the same period 

5. A Dynamic Thermal Ratings application developed by the University of Manchester 
calculates the temperature of the Transformer ‘Hot Spot’ for both scenarios 

6. For the scenario where the Site 1 circuit breaker is ‘open’, if the maximum forecast 
temperature for the Transformer Hot Spot at Site 2 is predicted to exceed the 
threshold programmed in the system, Site 2 will ‘request assistance’ from Site 1 

7. If such a request is received, and the predicted Hot Spot Temperature for Site 1 for 
the scenario of the circuit breaker being closed, does not exceed the threshold 
programmed in the system, then Site 1 closes the circuit breaker, meshing the LV 
network and reducing the load on the Site 2 Transformer 

Full details of the control system operation utilised in the OpenLV Project trials was 
published as part of SDRC 2.2, (Annex 1 - “Loadsense Operational Logic”). 

 

Alvin Reclose™ control software testing 

Prior to deployment of the Alvin Reclose™ hardware for the purpose of LV network 
switching, Factory Acceptance Tests (FAT) were undertaken in a laboratory at EA 
Technology offices to verify the capability of the trial platform to: 

• Track the transformer’s thermal state 

• Take the output of the profile prediction application and predict the transformer’s 
future thermal state 

• Control the Alvin Reclose™ device to manage the network in response to that 
prediction 

Five specific tests were witnessed by representatives from WPD, with a detailed explanation 
of system operation provided following testing completion. 

Both the FAT documentation, and following explanatory report are provided in Annex 2 and 
Annex 3. 

Following receipt of the detailed explanation of the system operation, WPD approved the 
system for trial deployment. 

 



 

 

 Page 18 of 76  

SDRC 4 
LEARNING GENERATED FROM THE OPENLV PROJECT TRIALS 

2.2.4 Site Selection Process 

The process for selecting substations for use in the project trials (fully detailed in SDRC 2.2) 
resulted in 30 pairs of substations being utilised in the project; 25 pairs were installed as 
Phase 1 (passive) sites, with the remainder being outfitted for Phase 2 (active) sites. 

Wherever possible, network pairs were selected to avoid the potential of interlinking 
different higher voltage circuits. In some instances such potential was unavoidable due to 
the requirement for a minimum number of each LV network Template Type, these pairs 
were removed from consideration for the active switching part of the trials and only 
operated as a Phase 1 pair. 

It was also identified in some locations that whilst the two substations were connected to 
the same 11kV circuit at the time of the network selection process, it was possible, in the 
event of a network fault, for some automated restoration procedures to connect them to 
different 11kV circuits. 

Where this was identified, the networks were not utilised for active switching trials, and the 
data gathered was used to inform the thermal modelling work. 

 

LV network Templates Analysis 

WPD provided EA Technology with the necessary information relating to the LV network 
across their licence areas, allowing the evaluation of every substation using the LV network 
Templates tool, created by WPD’s previous Network Templates research project [3]. 

A relatively small number of substations across each licence are were unable to be 
evaluated due to gaps in the data, but in total, the data for more than 146,000 substations 
was processed, with the LV network Template Type being determined for each. 

Full details on the distribution of different LV network Template Types across WPD Licence 
Areas are detailed in Appendix 1. 
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Trial Substations 

It was stated in the OpenLV Bid Documentation that of the eight LV network Templates to 
be used in the trials, at least three of each type would be utilised within the project except 
for network types 8 and 10. These were excluded from the desired trial networks due to the 
load type and general lack of variability within the load profiles. 

Table 1: LV network Types 

LV network 
Type 

Template Description No. of 
Networks 

(Method 1) 

1 High I&C Dominance 7 

2 Modest Domestic Dominance (~60%) (Suburban) 11 

3 Modest Domestic Dominance (~60%) (Urban) 7 

4 High Domestic Dominance (~90%) (Modest Customer Size 
~170) 

14 

5 High Domestic Dominance (~90%) (Low Customer Size ~70) 3 

6 Very High I&C Dominance 10 

7 Modest Domestic Dominance (~60%) (Rural) 3 

8 Industrial Flats N/A 

9 Domestic Economy 7 Dominance (~65%) 5 

10 Lighting N/A 

 

Appendix 2 provides details on which LV network Template type each substation used in the 
project trials was determined to be. 

It is noted however that due to changing load across seasons, a substation’s network type 
can change over the course of the year; for the purposes of the project, Winter was 
selected as the season for assigning the network type, as traditionally this is the period of 
peak loading on the distribution network. 

 

2.2.5 Data Collected 

The LV-CAP™ platform deployed as part of the OpenLV trials utilised Lucy Electric GridKey 
(MCU520) platforms to directly monitor the LV network, passing the data gathered to the 
LV-CAP™ platform for storage and access by other application containers running on the 
platform. 

Full details of the measurements recorded by the trial equipment are detailed in Annex 4. 



 

 

 Page 20 of 76  

SDRC 4 
LEARNING GENERATED FROM THE OPENLV PROJECT TRIALS 

Across the 80 substations deployed as part of the OpenLV trials, accounting for the different 
configurations of network feeders at each location, in every 24-hour period where all units 
were operational, over 15 million individual data points were collected. 

There were a number of instances over the 2018 – 2019 period where transient faults on 
the local network caused the trial hardware to be switched off by local protection systems, 
causing a data gap until the local network team were able to visit the site to manually 
restart the system. 

It is noted that the requirement for a manual intervention in these circumstances is due to 
the specific Method of powering the trial hardware and would not affect BAU deployments 
of distributed intelligence hardware. 

 

2.3 Analysis and Results 

2.3.1 LV-CAP™ platform 

The OpenLV trials have successfully demonstrated the ability of the LV-CAP™ platform to 
deliver on the system requirements outlined in Section 2.1, through the use of measured 
data to make predictions about future behaviour on the network and implement actions as 
a result. 

The LV-CAP™ platform was designed so each calculation container would be capable of 
interchangeability with another. The intention being for bespoke combinations of 
applications being configurable for individual substations, or areas, utilising the best 
‘product’ for each location. 

In line with this approach, the applications deployed to the LV-CAP™ platforms as part of 
the OpenLV Project each perform a single discrete task, and are capable of being replaced 
by another application in the future; as long as the published outputs are replicated the 
system would continue to operate with no loss of service. 

The specific calculations undertaken for the autonomous Method 1 deployments are 
detailed below. 

1. A Load Profile Prediction application; every 30 minutes, this application utilised the 
historical load on the transformer and feeder to make a broad prediction of the load 
for the next 4 hours, in the two scenarios defined above, publishing a load profile for 
each scenario 

2. No external information such as weather forecast, or anticipated date specific load 
variations was utilised to inform the predictions 

3. The predicted load profiles served as the input data for the Dynamic Thermal Rating 
application, originally created by the University of Manchester prior to the OpenLV 
Project. This utilised a combination of historical loading and Ambient Temperature 
data to calculate the Transformer Hot Spot, and Top Oil Temperatures 

4. The Dynamic Thermal Rating application then takes the profile predictions for the 
next four hours and calculates the temperatures the Transformer publishing the 
highest temperature it is anticipated to reach within that period for both scenarios 
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5. Finally, an application called Loadsense monitors the outputs, and at the Site 2 
location if, for the scenario forecast for the circuit breaker remaining open, a 
temperature that exceeds the operation threshold programmed into the system is 
predicted, a ‘request’ for Site 1 to provide assistance is transmitted 

6. The Loadsense application at Site 1, on receipt of an assistance request from Site 2, 
will check whether in the ‘circuit breaker closed’ scenario, it has capacity to provide 
support. If it does, then the circuit breaker is closed and the transformer at Site 1 
takes on some of the load from the connecting feeder, reducing the load at Site 2 

It is noted that the LV network system arrangement for these active trials is shown in Figure 
4, where the full feeder length is initially energised from the Site 2 substation, with support 
from Site 1 when required. 

The LV-CAP™ platform ably demonstrated the capabilities of Distributed Intelligence, 
undertaking active control of the LV network, without the intervention of operators from 
WPD or EA Technology, and retrospective analysis of the data showed it had operated 
exactly as had been intended. 

 

Overview of switching data plots 

In the below series of plots, Pair 22 is used as the exemplar location, demonstrating the 
measurable effect of active trial operation on the LV network. 

 

Figure 6: Pair 22 - Location and Network Layout Details 

In this network, the substation designated RAVC is operating as Site 1, (the Control Site), 
responding to Site 2, located at St. Batholomews (the Supported Site) when assistance is 
requested. 



 

 

 Page 22 of 76  

SDRC 4 
LEARNING GENERATED FROM THE OPENLV PROJECT TRIALS 

Figure 7 below shows the total loading on each transformer across the week commencing 
July 15th, 2019. The RAVC transformer is rated at 800kVA with St. Bartholomews being rated 
at 315kVA and it is clear that neither are approaching their capacity limits. 

 

Figure 7: Pair 22 - Transformer Loading 

The algorithm developed by the University of Manchester is used to undertake a number of 
calculations every 30 minutes: 

• The instantaneous Hot Spot Temperature based on the data recorded by the system 
and information on the transformer 

• The Top Oil Temperature, based on the Hot Spot Temperature and information on 
the transformer 

• Utilising predicted load profiles to predict the highest Hot Spot Temperature to occur 
in the Site 1 transformer if the circuit breaker is closed 

• Utilising predicted load profiles to predict the highest Hot Spot Temperature to occur 
in the Site 2 transformer if the circuit breaker remains open 

As it is impossible to measure the Hot Spot Temperature of an operational transformer, the 
calculated Top Oil Temperature is used as a proxy to determine whether the calculations 
can be relied upon for the trial’s control system. 

It can be seen below in Figure 8 that for both transformers, the measured and calculated 
temperature for the Top Oil are following near identical tracks, but offset by approximately 
3°C.  The process for calculating the Top Oil Temperature is linked to the Hot Spot 
Temperature, giving assurance that the calculated Hot Spot Temperature is also following a 
similarly accurate trace to the actual temperature, whilst also being offset in the same way. 

This offset, calculating a slightly higher temperature than was actually recorded, served to 
provide an additional safety margin for the system being trialled. 
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Figure 8: Pair 22 - Measured vs Calculated Temperatures 

Using forecasted load profiles allows the thermal rating application to predict the Hot Spot 
Temperature for the worst-case scenario for each transformer as defined above. 

In a business as usual scenario, it is anticipated that the thresholds would be set for the 
protection of each transformer using values defined to avoid accelerated asset ageing, refer 
to Table 2, but in order to ensure system operation within the trials, thresholds were set at 
significantly lower values to demonstrate platform functionality. 
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Figure 9: Pair 22 - Switching Operation 

Figure 9 shows that at all times, the forecast Hot Spot Temperature for the RAVC 
transformer remains well below the safety threshold, where the system would abort any 
requested meshing operation. 

Consequently, the switching operation is triggered only in response to the Hot Spot 
Temperature for the St. Bartholomews and it can be seen that the switching operation 
occurs whenever the forecast temperature exceeds the threshold. 

The system operation had a measurable impact on the total transformer and connected 
feeder load, as shown in the below plots, comparing the load that would have occurred 
without switching being implemented, with the actual load as a result of the control system 
operation. 
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Figure 10: Pair 22 - Control Site Switching Response 

Figure 10 (above) and Figure 11 (below) show an increase in load on the feeder and 
transformer at the RAVC substation, with equivalent decreases at St. Bartholomews when 
the circuit breaker is closed. 

 

Figure 11: Pair 22 - Supported Site Switching Response 
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Figure 12 below shows the effect of the switching control on the network assets, comparing 
the predicted Hot Spot Temperatures against the instantaneously calculated value for each 
30-minute period. 

 

Figure 12: Pair 22 - Effect of Switching on Tx Temperatures 

When the switching is not enacted, the instantaneous and forecast values match, or trend 
towards each other. Where this doesn’t occur (July 18th – 19th) it can be seen that both 
transformers experienced lower than anticipated temperatures. This was due to a lower 
than anticipated demand on the local network, contributing to the lower actual 
temperatures and the subsequently shorter switching periods experienced on those two 
days. 

It is emphasised that for Site 2 locations, implementation of such a control system will result 
in asset load being lower than the worst-case prediction, and subsequently a lower than 
predicted Hot Spot Temperature if the switching mechanism is enacted. 

Inversely, for Site 1 locations the worst-case prediction will be tended towards where 
switching is enacted and once the network load begins to reduce, will track the current 
temperature until load forecasts begin to increase again. 

It is clear from the above plots that the load experienced by each substation was different 
to that being forecast, prior to operation of the system.  The LV-CAP™ platform enacted 
measurable changes to the LV network, demonstrated by the forecast temperatures being 
different to those that occurred during the period of active control. 

Considering such a response in a business as usual scenario, where the system would only 
operate when protection of the network assets were required, rather than for artificially 
low thresholds as used in the trials, the approach of ‘operate ahead of need’ has been 
demonstrated to benefit the asset. 
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A system configured in this way and reporting such operations to the asset manager could 
provide additional capacity / extend usable life of the asset whilst assessment was 
undertaken and a longer-term solution, if necessary, prepared. 

 

2.3.2 Dynamic Thermal Ratings (DTR) 

When considering the utilisation of network assets, existing equipment ratings are based on 
assumptions about the cyclic nature of the connected load. These are conservative, and 
often mean that the ‘nameplate rating’ of a transformer may be significantly below what it 
can actually deliver. 

Previous projects have demonstrated the benefits of DTR or RTTR (Real Time Thermal 
Rating) of assets and as such, the OpenLV Project did not intend to evaluate the 
effectiveness of such an approach in general terms. 

The specific application developed by the University of Manchester for calculating the Hot 
Spot Temperature of a transformer will be evaluated however, to determine the potential 
benefits from deployment in a BAU context using a distributed intelligence platform. 

The application deployed in the trials, utilised algorithms developed as part of a study of 
“Thermal Monitoring and Thermodynamic Modelling of Distribution Transformers” 
undertaken by the University of Manchester with Electricity North West, included in Annex 
5. 

The pertinent element of this research, from the OpenLV Project perspective, was work to 
“refine thermal parameters for individual transformers to reflect their differences in 
thermal characteristics based on the IEC 60076-7 thermal model.” 

As such, the algorithm developed by the University of Manchester was ideally suited to be 
deployed in a self-contained application on the LV-CAP™ platform and provide the project 
with a calculation for the Hot Spot Temperature that could be considered reasonably 
accurate.  This allowed for control operations to be initiated based on value that was 
previously impossible to use directly. 

 

Business as Usual Considerations 

The nameplate value on a transformer is the static kVA rating for the asset whereas the use 
of cyclic ratings can provide additional ‘peak capacity’, leveraging the variability in network 
loading and that asset temperatures vary far slower than load. 

Cyclic ratings are higher than a static rating because under normal operating conditions, the 
temperature of the transformer is the principle factor when considering the ageing rate of 
the asset. 

The Hot Spot Temperature is primarily affected by two factors: the Ambient Temperature 
affecting the rate at which the transformer can radiate heat to the environment and the 
network load, with higher energy draws by connected customers increasing the heat 
generated within the transformer. 
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SP Energy Networks’ Flexible Networks for a Low Carbon Future report titled ‘Enhanced 
Transformer Ratings Tool’ confirms a continuous, or static rating of a transformer is 
calculated on an Ambient Temperature of 20°C and a Hot Spot Temperature of 98°C. Whilst 
this report was written with respect to Primary Transformers, the industry standard thermal 
model utilised as the primary reference (IEC 60076-7) was also the source for the work 
undertaken by Electricity North West and the University of Manchester when developing 
the algorithm utilised in the OpenLV Project for Dynamic Thermal Rating calculations. IEC 
60076-7 provides an indication of the effects of Hot Spot Temperature on the aging rate of 
the asset, and therefore confirms that operating a transformer below a temperature of 98°C 
is preferred. 

Table 2: IEC 60076-7 Hot Spot Temperature vs Age Rate 

Hot Spot Temperature (°C) Non-Thermally Upgraded 
Insulation Age Rate 

80 0.125 

86 0.25 

92 0.5 

98 1 

104 2 

110 4 

116 8 

122 16 

128 32 

134 64 

140 128 

 

Calibration & Accuracy 

The application deployed in the project utilised historical network loading and Ambient 
Temperature data to calculate the instantaneous temperatures of both the Hot Spot and 
the Top Oil. 

Each application was initially calibrated based on the transformer’s power rating (kVA) and 
the voltage level, with further adjustment proving essential dependent on the environment 
of the substation assets. 

These adjustments were undertaken over a period of several weeks for each transformer, 
eventually provided a good calculated value for the Top Oil Temperature when compared 
directly with the measured temperature. of calibration to ensure a good fit between the 
calculated and actual Top Oil Temperatures. 

The below figures show the improvement in calculated accuracy as a result of calibration 
updates to the LV-CAP™ platform installed at unit OpenLV-064. 
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On first deployment of the dynamic rating application to OpenLV-064, the calculated Top Oil 
Temperature varied from the measured reading by approximately 5.5°C, a difference that 
reduced to approximately 4°C after the configuration was adjusted for the specific asset 
characteristics. detailed in Annex 5, Appendix: Thermal parameters derived by heat run test 
data of 20 distribution transformers representing population. 

 

Figure 13: DTR Application Calibration - First Stage 

A further adjustment to the configuration of the algorithm reduced the differential between 
calculated and measured Top Oil values to an average of less than 1°C. 

 

Figure 14: DTR Application Calibration - Second Stage 
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The final settings utilized for the trial did not fully account for the thermal mass of the 
transformer, as the calculated value tended to overshoot the measured readings but on 
average the temperature value was approximately 0.75°C away from the measured reading, 
an accuracy considered to be ‘close enough’ for the purposes of the project. 

 

Figure 15: DTR Application Calibration - Third Stage 

This process was followed for each of the network pairs utilized in the active control trials, 
and whilst a reasonably high level of accuracy was achieved, the necessary configuration 
process would be unsustainable for deployment across the GB network. 

For any application requiring similar levels of calibration, it is recommended that a Method 
of automatic tuning should be incorporated. An accuracy rating would also be beneficial if 
included in such an application’s outputs, (where a measured value can be directly 
compared with a calculation), allowing for a ‘trust level’ to be applied to system outputs. 

It is clearly not possible to measure the Hot Spot Temperature of a transformer during 
normal operation, preventing a direct comparison between the actual Hot Spot 
Temperature and that calculated by the application. 

However, as the same process of temperature calculation is used for both the Top Oil and 
Hot Spot Temperatures, ensuring the calculated Top Oil Temperature was practicably close 
to the measured value, provided assurance that the Hot Spot Temperature could be 
assumed to also be reasonably close. 

After calibration, it was found that it was possible to achieve a high level of accuracy with an 
average difference of 2°C across all ten substations. 

The table below shows the maximum, average and minimum differences between the 
actual and calculated Top Oil Temperatures for all Method 1, Phase 2 substations in March 
2019. 
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Table 3: Method 1 Phase 2 - Calculated Top Oil Accuracy 

 

 

The process encoded within the application to calculate the Top Oil Temperature is also 
used to predict the transformer Hot Spot Temperature and as such, whilst it is not possible 
to directly measure the Hot Spot Temperature, it is assumed that the calculated Hot Spot 
Temperature will not be significantly less accurate than the calculated top oil value. 

 

Assessment of relationship between the Tx Load and Hot Spot and Top Oil Temperatures 

Statistical analysis (detailed in Appendix 1) was utilised to determine the relationship 
between the Transformer Load and the calculated Hot Spot Temperature, such that it could 
be deployed more widely and cost effectively. 

This analysis determined that where real-time monitoring was available for the 
Temperature of both the Transformer Top Oil, and the environment surrounding the 
Transformer, and the total % Loading of the Transformer, then the Hot Spot could be 
calculated with a high level of accuracy through the derives equation. 

 

Equation 1 : Three variable equation for calculating Tx Hot Spot 

𝑇𝑒𝑚𝑝. 𝑇𝑥𝐻𝑜𝑡𝑆𝑝𝑜𝑡𝐸

= 2.96 + (0.627 × 𝑇𝑒𝑚𝑝. 𝑇𝑜𝑝𝑂𝑖𝑙𝑀) + (21.5 × 𝑇𝑥 %𝐿𝑜𝑎𝑑𝑀)
+ (0.349 × 𝑇𝑒𝑚𝑝. 𝐴𝑚𝑏𝑖𝑒𝑛𝑡𝑀) 

 

Calculated Hot Spot Temperatures 

Evaluation of the calculated Hot Spot Temperatures in relation to the % Loading of the 
OpenLV trial transformers revealed that the 98°C threshold was only exceeded on two 
occasions (see Figure 16). 

Transformers of different ratings were found to operate in a similar manner at lower 
ratings, but begin to slightly diverge as the loading increases. As such, transformers were 
split into three groupings for consideration: <500kVA, 500kVA, and >500kVA as shown in 
the figure. 

Pair ID

OpenLV ID OpenLV-084 OpenLV-013 OpenLV-016 OpenLV-042 OpenLV-041 OpenLV-064 OpenLV-067 OpenLV-082 OpenLV-075 OpenLV-050

Tx Rating (kVA) 800 315 500 500 500 315 500 500 315 500

Substation Type Indoor Indoor Indoor Indoor Indoor GRP GRP GRP Indoor Indoor

Max Variation 3.70 6.10 6.30 1.90 4.80 5.20 2.60 4.70 4.60 2.40

Average Variation 2.53 3.75 4.57 0.83 2.90 1.15 0.61 1.98 1.44 0.79

Min Variation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Pair 22 Pair 26 Pair 27 Pair 28 Pair 29
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Figure 16: Calculated Hot Spot vs % Loading (Tx Groupings) 

Utilising this data to derive formulae for predicting LV transformer Hot Spot Temperatures 
as loading increases allowed calculation of the theoretical limit to which LV transformers 
can be loaded to, when Ambient Temperature conditions are suitable. This was achieved 
through determining trend line for the three transformer groupings evaluated, as seen in 
Figure 17. 
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Figure 17: Forecasting Tx Hot Spot Temperatures 

Solving the derived formulae for a Hot Spot value of 98°C, provides a theoretical peak 
loading for each grouping or tier of transformers, if utilising the algorithm developed by the 
University of Manchester in comparable environmental conditions to the original data set. 

Table 4: Instantaneous DTR Rating 

Tx Tier Instantaneous DTR Rating 

Small (<500 kVA) 224% 

Medium (500 kVA) 149% 

Large (>500 kVA) 184% 

 

Determination of the potential headroom increase achievable from the DTR application up 
to the levels determined in Table 4 of requires consideration of the existing policies, viability 
of installation of the necessary distributed intelligence hardware, and whether surrounding 
hardware is capable of such increase. 

 

Effect of Ambient Temperature on Calculated Hot Spot Temperatures 

The wide range of Hot Spot Temperatures measured for any given level of proportional 
loading is an effect of the Ambient Temperatures. This is evidenced by the below plots 
showing the range of calculated Hot Spots relative to proportional loading, grouped by 
Ambient Temperature ranges. 
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Figure 18: Calculated Tx Hot Spot in relation to surrounding temperature 

Figure 18 shows clear bands of calculated Hot Spot Temperatures, all following broadly the 
same pattern of increasing in line with the proportional loading experienced by the 
transformers, but consistently increasing as the temperature of the surrounding 
environment increases (whether an indoor or outdoor site transformer). 

Further analysis of calculated Hot Spot Temperatures is available in Appendix 4. Figures 
detailing the banding in separate plots are provided in Appendix 5. 

 

2.3.3 LV Switching 

Within the active trials’ element of the OpenLV Project, the controllable circuit breaker was 
located at one substation of the pair, principally to reduce the cost of project deployment, 
whilst maintaining the ability to demonstrate active control of the network by the LV-CAP™ 
platform. 

Were automated network meshing to be utilised for business as usual deployments, it 
would be preferable to ‘mesh’ the networks at the Normally Open Point, leaving the LV 
network in a standard radial configuration when meshing is not required. 

Consequently, rather than simulating the meshing of LV networks at one substation or the 
other, the below analysis has been undertaken as if the meshing were to occur at the NOP. 

 
  



 

 

 Page 35 of 76  

SDRC 4 
LEARNING GENERATED FROM THE OPENLV PROJECT TRIALS 

Analytical Process 

The potential benefits from this load switching solution rely on the linking of two feeders via 
the NOP enabling a proportionally less loaded transformer to ‘pick up’ load from another 
transformer that has a higher proportional load. 

Note that it is not necessary for either transformer to be under excessive strain for benefits 
to be achieved, but it requires the connecting feeder to be imbalanced on either side of the 
NOP, otherwise the load transfer from one side to the other will be minimal. It is also 
possible that when meshing is initiated at the NOP, any load transfer is low enough, in 
proportion to the overall transformer load, that any benefit is negligible. 

For the purposes of determining the maximum potential benefit achievable from this 
solution, simulation of the network benefit in each substation pair was done by calculating 
the effect of linking the feeders at the NOP with the assumption that the load share 
between the feeders will be 50% to each substation. 

Pair 2 is used to demonstrate this approach in the figures below. 

Substation OpenLV-005 has a transformer with a nameplate rating of 500kVA, with an 
average loading through January 2019 of 37%. The connected substation, OpenLV-008, is an 
800kVA nameplate rated transformer that experienced an average loading of 12% in the 
same period. 

 

Figure 19: Pair 2 - Unmeshed Loading 

It can be seen from the above figure that there are relatively substantial differences in the 
load on each transformer, and on the connecting feeder from each substation. It would 
appear that if either transformer were approaching its operational limit, benefit could be 
gained from meshing the LV network. 
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OpenLV-005 has the highest actual load, both at the transformer and along the feeder, and 
hence will benefit from the implementation of a load sharing scheme. Simulating this 
solution for the feeder provides the result shown below, with the highest load peaks on the 
feeder from OpenLV-005 dropping to approximately 60% of the pre-mesh figure, with the 
load on the OpenLV-008 feeder increasing accordingly. 

 

Figure 20: Pair 2 – Feeder Comparison – Meshed & Unmeshed Loading 

This solution smooths the variability of load on the feeder whilst lowering the peak and 
average feeder load for -005 and raising it for -008, an effect also repeated at the 
Transformer level. 

In contrast however, it is clear that the relatively high benefits achieved at the feeder level, 
do not translate to equivalent, proportional benefits at the transformer level (see Figure 21) 
due to overall loading differential. 
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Figure 21: Pair 2 – Transformer Comparison – Meshed & Unmeshed Loading 

In circumstances where there is a load imbalance between two substations at either end of 
the feeder, linking the feeders together benefits one substation through load reduction, but 
negatively affects the other by the same amount in real terms. 

The implementation of automated load transfer schemes, either through the use of Smart 
Link Boxes or configuring the Alvin Reclose™ style switches to implement such services has 
the potential to provide localised headroom increases, depending entirely on the Tx ratings 
and load on the interconnected feeders. 

 

Outcomes 

This solution is viable however in certain circumstances: 

1. If the transformer experiencing a load increase has a larger nameplate capacity than 
the other, then additional capacity has been released through better balancing of 
the network assets 

2. Similarly, if the transformer to experience a load reduction is near its operating limit 
then any reduction that can be achieved is of benefit, so long as the load transfer 
does not push the other transformer into a similar state 

3. Where the load types are significantly different on the two feeders, (i.e. industrial 
load versus domestic), where there is minimal overlap in load requirements and both 
transformers can benefit from reduced feeder loads 

4. Where Alvin Reclose™ type have already been deployed for the purpose of 
automated fault restoration as the marginal cost for implementing automated load 
sharing / LV switching could be a worthwhile investment 

This particular combination of circumstances is not common across the LV network and 
unless significant load imbalances are in effect, are unlikely to provide any material benefit. 
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Recalculating the average loading for Pair 2 in January 2019, assuming the load transfer 
were in place throughout the period, results in a minor capacity release of 1.55kVA, 
achieved through the reducing the load experienced by OpenLV-005 by a greater 
proportional amount than the increase experienced by OpenLV-008. 

Across the substation pair, this equates to a 0.12% increase in capacity, and is the highest 
identified gain of any pair in the OpenLV Project. 

The full table of potential benefits from this Method across the 30 pairs deployed in 
Method 1 is provided in Appendix 5. 

It is therefore concluded that whilst the LV-CAP™ platform demonstrated the ability to 
automate network switching, to deploy such a solution in isolation, for the purposes of 
releasing additional network capacity is unlikely to achieve any widescale network benefits, 
although it remains a possibility in isolated instances. 

For the purposes of this report however, the level of practicable capacity uplift that can be 
achieved as a result of deploying such a solution are determined to be zero. 

 

2.3.4 Combining DTR with LV Switching 

The net benefit achievable from implementing LV switching is unchanged when combined 
with the use of Dynamic Thermal Ratings. 

Consequently, the level of capacity uplift that can be achieved from deploying both 
solutions, as configured in the OpenLV Project, is the same as for the implementation of 
DTR alone. 

 

2.3.5 Extrapolation to BAU 

Analysis of the data gathered throughout the OpenLV Project has not demonstrated any 
measurable difference between the potential benefits for different network types. The 
measurable variations relate to the transformer capacities and the changing temperature of 
the transformer’s surroundings. 

Consequently, on a theoretical basis, the realisable benefits from the Method 1 trials can be 
applied to all substations in the GB network, if deemed cost effective to do so. 
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WPD Licence Areas 

WPD’s Company Directives and Policies reference multiple industry standards, and when 
considering the extent to which transformers can be loaded beyond the nameplate rating, 
define the following principles: 

• Policy Document SD4/8 [4]: when discussing the implementation of Active Network 
Management (ANM) schemes then “the maximum load on any item of plant or 
equipment, excluding overhead lines, shall not exceed 125% of its rating” when the 
effect of the implemented ANM scheme is disregarded. This is intended to mitigate 
the impact of the ANM scheme failing for any reason 

• Standard Technique TP4B/2 [5]: states that when selecting fuses for 11kV and 6.6 kV 
transformers, “Transformer overloads up to 150% of nameplate rating shall be 
possible”. This is taken to mean that even with active network management 
monitoring the hot spot of these units, 11 kV and 6.6 kV transformers will not be 
able to be loaded above 150% 

Analysis of WPD’s licence areas provides the detail available in Appendix 1 from which is can 
be seen that the total capacity of WPD’s LV network Transformers is approximately 25,400 
MVA. 

This is comprised of: 

Table 5: WPD Licence Area Network Capacity 

Transformer Ratings LV network Capacity 

(Nameplate Ratings) 

< 500 kVA 10,300 MVA 

500 kVA 8,400 MVA 

> 500 kVA 6,700 MVA 

Total 25,400 MVA 

 

When considering the potential head room increase possible from the OpenLV Project’s 
DTR trials, WPD’s operational policies and procedures, the following points are key: 

1. That without the presence of an Active Network Management scheme, the 
maximum capacity of the network is 125% the nameplate rating of the connected 
transformers 

2. That deployment of a Distributed Intelligence Device enables implementation of 
ANM schemes that will maintain operational effectiveness even in the event of poor 
communications, and therefore will continue to operate whilst the connected LV 
network is energised 

3. That short-term overloads of assets are possible, and shall remain restricted to 150% 
of the nameplate rating. This restriction stems from fuse limitations rather than 
those of the transformers 
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As the DTR formula calculations restrict 500 kVA transformers, on average, to 149% of the 
nameplate rating (as demonstrated in  in Section 2.3.2) which is less than the currently 
permissible short-term overload, the potential for further capacity release lies with the 
transformers above and below this 500kVA rating (see Table 4 in Section 2.3.2). 

However, it is also considered unlikely that transformers of a capacity below 300 kVA would 
be outfitted with distributed intelligence platforms for solely network capacity uplift 
benefits1, (at least within the foreseeable future), as the achievable benefits would be 
outweighed by the deployment and maintenance costs. 

Therefore, determining the potential increase in WPD’s network capacity based on 
transformers of a rating 300 kVA and greater, provides: 

Table 6: Implementing OpenLV DTR in comparison to WPD's current operational practices 

Tx Rating No. of Tx Static 
Capacity 

(100% Rating) 

Cyclic Capacity 

(125% Rating) 

Cyclic Capacity 
(Fuse Limited) 

(150% Rating) 

Theoretical 
Thermal Capacity2 

(DTR Rating) 

< 300 kVA 106, 705 5,700 MVA 7,150 MVA 8,600 MVA 8,600 MVA 

300 kVA 6,384 1,900 MVA 2,400 MVA 2,900 MVA 4,290 MVA 

315 kVA 8,534 2,700 MVA 3,400 MVA 4,000 MVA 5,900 MVA 

500 kVA 16,805 8,400 MVA 10,500 MVA 12,600 MVA 12,500 MVA 

750 kVA 1,625 1,200 MVA 1,500 MVA 1,800 MVA 2,240 MVA 

800 kVA 3,995 3,200 MVA 4,000 MVA 4,800 MVA 5,900 MVA 

815 kVA 1 815 kVA 1 MVA 1.2 MVA 1.5 MVA 

1000 kVA 2,238 2,200 MVA 2,8000 MVA 3,400 MVA 4,100 MVA 

1500 kVA 9 13.5 MVA 16.9 MVA 20,250 MVA 24,800 MVA 

1600 kVA 1 1.6 MVA 2 MVA 2.4 MVA 2.9 MVA 

Total Capacity 25,400 MVA 31,750 MVA 38,100 MVA 43,700 MVA 

Rating Increase (Relative 
to Previous Level) 

 6,350 MVA 6,350 MVA 5,600 MVA 

Total Capacity (Relative 
to Previous Level) 

100% 125% 150% 172% 

 
  

 

1 It is acknowledged that deployment to smaller transformers for the purposes of supporting community 
groups or third party requirements may occur, but for the purposes of only seeking to increase network 
capacity in such a situation, upgrading of the asset is considered to be a more viable solution. 

2 Due to protection setting policy, this level of uplift is purely theoretical. 
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Whilst utilising the DTR calculations on all transformers considered eligible for active 
management of this nature results in a slight reduction in available capacity from 500 kVA 
transformers, across WPD’s licence areas a net increase of 5,600 MVA is theoretically 
possible, if all transformers were outfitted with a distributed intelligence platform. 

Such an approach would however require alternative solutions to managing the protection 
requirements as exceeding 150% rating risks burning out fuses. 

It can clearly be seen from Figure 22 that pushing transformer loading to 150%, and using 
distributed intelligence to provide support systems for the reporting of outlier substations, 
can allow greater confidence in the management of the LV network. 

Allowing additional benefits from the deployment of distributed intelligence devices for the 
purpose of real-time asset monitoring, providing confidence the network is operating within 
acceptable tolerances, with the capability to trigger alerts where needed. 

 

 

Figure 22: Calculated Tx Hot Spots by % Loading 
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GB LV networks 

EA Technology’s Transform Model™ (detailed in Appendix 7) is a mathematical model of the 
GB LV Distribution Network. 

The model mathematically defines 966,700 transformers with varying customer types (both 
load and generation) to forecast future scenarios for the network. 

Utilising the variety of transformer nameplate ratings across WPD’s four licence areas as a 
baseline, the following figures were determined as a reasonable estimate for transformer 
rating variation across the GB network. 

Table 7: Implementing OpenLV DTR on GB LV networks, utilising the same operational practices as WPD 

Tx Rating No. of Tx Static 
Capacity 

(100% Rating) 

Cyclic Capacity 

(125% Rating) 

Cyclic Capacity 
(Fuse Limited) 

(150% Rating) 

Theoretical 
3Thermal Capacity 

(DTR Rating) 

< 300 kVA 705,084 37,820 MVA 47,270 MVA 56,725 MVA 56,725 MVA 

300 kVA 42,184 12,655 MVA 15,820 MVA 19,000 MVA 28,350 MVA 

315 kVA 56,391 17,760 MVA 22,200 MVA 26,600 MVA 39,800 MVA 

500 kVA 111,044 55,520 MVA 69,400 MVA 69,400 MVA 82,700 MVA 

> 500 kVA 51,997 44,000 MVA 55,100 MVA 66,100 MVA 81,079 MVA 

Total Capacity 167,800 MVA 209,800 MVA 251,730 MVA 288,670 MVA 

Rating Increase (Relative 
to Previous Level) 

 42,000 MVA 83,900 MVA 120,850 MVA 

Total Capacity (Relative 
to Previous Level) 

100% 125% 150% 172% 

 

The above calculations in Table 7 assume the same operational limitations and restrictions 
apply equally across the GB LV network. 

This provides a theoretical headroom increase of 120,850 MVA for the GB network, subject 
to alternative arrangements being available to mitigate the risks associated with 
overloading fuses. 

 

  

 

3 Due to protection setting policies, this level of uplift is purely theoretical. 
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2.3.6 Overall Results 

Benefits of Distributed Intelligence 

The benefits available from the deployment of a distributed intelligence platform like LV-
CAP™ can be considered in multiple categories: 

• Where gathering network data is necessary, processing it locally and only 
transmitting the required information provides a significant reduction in operating 
costs 

• Implementation of network automation, with the system reporting by exception, 
allows for quicker network responses than would be possible if operations were 
required to be initiated by control room staff 

• Operating the network on the basis of ‘known, real-time data’ allows for greater 
capacity to be utilised, with different applications deployed to respond to specific 
network conditions 

• Significant volumes of data can be gathered, leveraging the ability of the platform to 
process and analyse it locally and report back findings by exception. It is not practical 
to transmit all the available data from every LV substation on the GB network, but 
deployment of local monitoring allows for a greater confidence in assets that would 
otherwise be considered to be in an ‘unknown state’ 

 

Dynamic Thermal Ratings 

The Dynamic Thermal Rating application deployed within the project has the potential to 
provide network benefits, particularly when combined with distributed intelligence 
platforms and local, real time data. 

Within WPD’s licence areas, the potential headroom benefit from the implementation of 
such an app is up to 5,600 MVA. 

 

Automated Network Switching 

Automated Network Switching on the LV network is considered to have the potential for 
providing network benefit, but the viable use cases are highly specific, and were not 
experienced within the range of substations trialled in the OpenLV Project. 

Where loads on the connecting feeder are significantly imbalanced allowing for load 
transfer to be implemented there is of potential benefit to the network. This will only apply 
however in situations where the Normally Open Point is not located at or near the loading 
mid-point on the network. 

Additionally, where feeders on either side of a Normally Open Point experience peak 
loading at different times of day, such as there being a high proportion of industry & 
commercial loading on one side of the NOP with a high proportion of a domestic load on 
the other provides a potential for network benefits. 

In both cases, reducing the peak loading of transformers combines with the real-time 
thermal rating to reduce transformer peak temperatures and hence increase headroom. 
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However, as the potential benefit is determined by the difference between the load on 
either side of the feeder, it is minor when compared to the rating of transformers. 

Whilst the project team find it conceivable that there are a number of locations in the GB LV 
network where an approach to automated network switching may be a viable solution, the 
cost of deploying the necessary hardware means it is considered to be a niche solution for 
specific network issues that by default tend not to occur in a well-designed and balanced 
network. 

 

Beneficial Applications 

Within the OpenLV Method 1 trials, the key benefit from the perspective of increased 
headroom was produced by the DTR application, however this remains a single, highly 
specific, albeit widely deployable, use case. 

Previous studies into the use of Dynamic Thermal Ratings on the distribution network have 
proved the significant potential such an approach can provide. Implementing DTR in 
combination with a distributed intelligence platform allows the real-time loading to be 
compared with the varying headroom based on the actual network conditions, and alert 
control staff if required. 

This allows focus to be directed where the most benefit can be realised whilst reducing risks 
inherent with operating the network through greater available knowledge of the state of 
the network at any time. 

Similarly, implementation of the Alvin Reclose™ units demonstrated the ability of an LV-
CAP™ platform to autonomously control the LV network, without the direct intervention of 
control room staff.  Such a system could be configured to notify the control room whenever 
operation was required, or only when operation was required a specified number of times 
within an assigned period, allowing flexibility to monitor the network as lightly, or detailed, 
as appropriate. 

Additionally, the commissioning process for the network automation hardware also 
demonstrated the ability for manual control of the automated switching devices through 
the LV-CAP™ platform.  An appropriately secured distributed intelligence platform can 
provide automation, and remote-control capability for any asset with a suitable connection 
to the platform. 
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2.4 Recommendations 

2.4.1 Distributed Intelligence 

Within the OpenLV Project the LV-CAP™ platform has demonstrated the utilisation of local, 
real-time and historical data, enables a distributed intelligence platform to implement 
changes to the local network to greater capabilities than has been previously possible. 

The value to be gained from such an approach is greater than is realised from just the 
applications deployed within the project trials. 

As the distribution network transitions further to a low carbon focus, the Distribution 
System Operator will require exponentially greater levels of information regarding the 
status of the network. Widespread deployment of distributed intelligence platforms is 
recommended as a valuable asset in both the gathering, and management of this data. 

By utilising trusted distributed intelligence platforms, running applications configured in line 
with the DSO operational requirements, significant volumes of data transmission can be 
avoided through local processing, and decision making, with reporting by exception 
allowing the focus of control engineers to be prioritised where it is most beneficial. 

The OpenLV Project has demonstrated that Distributed Intelligence devices can provide a 
significant benefit to the network, the limits being the applications available and the extent 
to which responsibility will be delegated to autonomous platforms by the DSOs. 

It is therefore recommended that the deployment of Distributed Intelligence Devices be 
considered by DSO’s as a key tool in their future plans to effectively manage changing loads 
on the LV network as the GB network transitions further towards a Low Carbon Economy. 

 

2.4.2 Dynamic Thermal Rating Applications 

Deployment of applications 

The LV-CAP™ platform’s ability to have software packages updated and reconfigured as and 
when required is a key consideration to the approach taken to determining the potential 
benefit that can be derived from a Dynamic Thermal Rating application deployed in wide 
scale to the platform. 

Whilst the application deployed within the trials demonstrated the ability for accurate 
predictions of asset temperatures, the project team found that the level of calibration 
required to achieve this was unsustainable for deployment to more substations than 
required within a limited series of trials. 

As such, there are two primary recommendations relating to the deployment of such a DTR 
application. 

1. Deploy Dynamic Thermal Rating Applications in two stages. 

Where a DTR application is being deployed to provide general monitoring purposes, 
for example as a default monitoring application to all standard deployments of a 
distributed intelligence platform, an application container utilising the general 
formula detailed as Equation 1 in Section 2.3.2should be installed. 
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This application will utilise the data gathered on the transformer’s load, and 
temperatures of both the top oil and ambient environment to calculate the 
instantaneous Hot Spot Temperature of the transformer. The application should be 
configured with a standard set of alert triggers, defined by the DSO, where an alert 
will be raised once the Hot Spot exceeds a particular level, or for an extended period. 
Once this alert is triggered, deployment of an application similar to that utilised 
within the OpenLV trials can be deployed, providing a more accurate Hot Spot 
calculation value, at the expense of requiring calibration on the initial deployment. 
This approach allows for the implementation of a Dynamic Thermal Rating ‘early 
warning’ system where distributed intelligence platforms are deployed, with minimal 
requirements to configure the platform before there is a defined need. 
If this approach were utilised, the OpenLV Project team recommend a simple trigger 
be considered in the first instance, such as the calculated Hot Spot temperature 
exceeding 90°C. 

2. Automate the configuration requirements of Dynamic Thermal Rating Applications. 

The DTR software container (or any other similar application) deployed in the 
OpenLV could be refined with a self-calibration layer to enable automated 
configuration. 
As the OpenLV trial hardware directly monitored the Transformer Top Oil 
Temperature, a value calculated by the DTR application developed by the University 
of Manchester, this could be utilised by the application to ‘learn’ the ideal 
characteristics of the transformer being monitored. 
This would enable greater accuracy in calculated Hot Spot values, at the expense of 
an application likely to be more expensive, a delay before usable readings were 
generated and the need for additional thermal monitoring hardware being installed 
at each substation. 
Such an approach, if utilised, should include an ‘estimated accuracy’ value with any 
calculated outputs, based on the difference between the calculated and measured 
Top Oil values. 

 

Realisation of DTR benefits 

The use of a simplified application, utilising key data available within a substation to 
calculate the transformer Hot Spot Temperature can provide immediate benefits to the 
potential headroom available within the LV network. 

Based on the data gathered, it is recommended that where distributed intelligence capable 
platforms are deployed, the simplified algorithm detailed in Section 2.3.2 is installed as 
standard, with automated alerts triggered when the Hot Spot Temperature is calculated to 
be approaching 98°C (a 90°C threshold for example). 

This is expected to provide up to 30% additional capacity in each location where the 
substation has been fitted with distributed intelligence capability. 
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It is also recommended however that additional monitoring applications are developed, as 
whilst the data gathered by the OpenLV Project shows that the combination of Ambient 
Temperature conditions and loading profiles allows for transformers to be utilised to a 
greater extent than the Nameplate rating would otherwise suggest, it would be unwise to 
rely on only transformer DTR. 

 

2.4.3 Automated LV Switching 

The principle of automated LV switching based on the real time requirements of the local 
network has been clearly demonstrated as a functionally useful tool for the management 
and operation of the network. 

Due to the cost associated with the required hardware in comparison to the realisable 
benefits in most network locations, it is not recommended that this approach is considered 
as a default solution. 

However, where other benefits can also be realised from the use of the switching hardware 
and distributed intelligence platform, this solution provides a reliable Method of 
automating the LV network. 

It is the recommendation of the OpenLV Project team that the use of automated LV 
switching be deployed as part of a wider solution where the realisable benefits make it cost 
effective, a calculation that will be required on a site-by-site basis where the specific 
conditions make it viable to be considered. 
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3 Conclusions 

3.1 Method 1 – Capacity uplift 

3.1.1 Sharing the level of capacity uplift achieved through Method 1 

Method 1 sought to test the hypothesis that having distributed intelligence available within 
distribution substations would enable capacity uplift through automated analysis and 
decision making based on observations of local conditions. Although the distributed 
intelligence does not in itself create capacity uplift, it does instead enable opportunities for 
capacity uplift. 

 

Network Meshing 

Method 1 also sought to demonstrate the ability of the OpenLV platform in instructing the 
operation of physical devices through a network meshing trial. The network meshing trial 
sought to allow two substations to run in parallel for a period of network requirement.  

To implement network meshing, it should be noted that the OpenLV trial installed 
intelligent LV devices at the 11kV/LV substations as a means to form NOPs that could be 
automated. This was an artificial approach as under business as usual conditions NOP’s 
would be found in link boxes in the public highway at a location typically midway between 
substations rather than on the bus bars at one of the substation pair. This artificial approach 
had to be taken as link boxes that could be automated were not commercially or technically 
mature at the time of project conception. 

The Method 1 network meshing trial demonstrated that it is practical to automate low 
voltage switching devices through the use of the OpenLV distributed intelligence platform. 

The sequence of calculation and switching detailed in Section 2.3.1 was found to operate as 
expected, based on the control logic programmed into the system. The trigger thresholds 
were adjusted through the period of active trials to allow for changing Ambient 
Temperatures and network loading, whilst ensuring the system would continue to operate. 

The network meshing trial also provided evidence that joining together of LV substations as 
demonstrated in the trial was unlikely to lead to significant capacity uplift between 
transformers. But it has already been acknowledged that this was an artificial trial 
approach. 

This trial also provided analytical evidence that points to a greater benefit of being able to 
control NOP’s located within link boxes, than having automated NOP on the LV bus bars. By 
investigating the effect of meshing at the feeder link box level, it was shown that there 
would be viable cases where meshing helped the feeder pairs share load much more 
effectively, but this approach was unlikely to help create transformer uplift. 

It should also be stressed, because of the maturity of automated link boxes at the time of 
project initiation, that this trial did not demonstrate the effect of transferring customers 
between substations by reassigning NOPs from the feeder mid-point to one of the feeding 
substations.  
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By definition, moving NOP’s in this manner will always be effective in reallocating 50%-
100% of a feeder’s load between substations. Having a capability to move NOP’s in this 
manner will also create additional use cases not considered in this trial, an example being 
the capability to automate LV customer restoration after unplanned outages. 

 

Dynamic equipment ratings 

DNO’s do allow a cyclic rating to be applied to their distribution transformers for limited 
emergency conditions, during a period of additional backfeed load for example. But these 
are based upon fixed and worst-case assumptions and typically only allow a fixed uplift 
beyond the continuous nameplate rating. 

Method 1 clearly demonstrated that having the ability to be able to apply real-time thermal 
ratings, based on site-specific measurements of Ambient Temperature and loading was 
capable of creating dynamic rating beyond the transformer’s nameplate rating. Because this 
process was continuous and undertaken locally, operating whilst power was available to 
energise the OpenLV equipment, if deployed in a BAU scenario, the rating uplift would be 
available, in effect on an ad-infinitum basis, rather than under emergency conditions. 

For such dynamic ratings to be taken advantage of there would need to be the ability to 
plan the network to remain with the expected dynamic ratings. Because the OpenLV trial 
gathered site-specific Ambient Temperature, hot spot forecast and loading cycles, this 
requirement would be satisfied. 

This capacity uplift would be leveraged further when and if distributed intelligence devices 
are able to instruct smart devices to respond to periods where the transformer was forecast 
to exceed temperatures without additional intervention.  

Such smart devices might include customer flexibility that was demonstrated through some 
of the Method 3 trials or alternatively some form of network reconfiguration such as 
changing the network open points. (It is acknowledged that the network meshing trial was 
inconclusive, but a next development step may be to prove the concept of LV network load 
transfers using smart link boxes. Smart link boxes were not technologically available at the 
time of the project initiation but progress in this field is ongoing.) 

 

Network meshing and Dynamic Thermal Ratings 

To implement Dynamic Thermal Ratings and network meshing, this trial had to implement 
three different applications running of the OpenLV platform within the substations. These 
applications were: 

• A load forecasting application 

• A transformer Dynamic Thermal Ratings application 

• The Loadsense application. This application would review data from the load 
forecasting application and the Dynamic Thermal Rating application and when the 
forecast load exceeded the forecast thermal rating, it would instruct the network to 
mesh 
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3.1.2 Establishing the level of capacity uplift that can be achieved in WPD’s 
licence area and across GB 

Section 2.3.5 describes how Method 1 has provided evidence regarding the amount of 
capacity uplift that could be experienced across WPD’s licence areas and also across the UK. 

This analysis makes a conservative assumption that if dynamic transformer ratings were 
only applied to transformers of a size 300kVA or greater (which is less than 27% of WPD’s 
total population of LV transformers) then 6350 MVA of total additional capacity would be 
created across 39,500 WPD substations. Extrapolation of this analysis across the total LV 
substation demographic of Great Britain would see a total uplift of 120,850MVA in 
transformer headroom. 

It should be remembered thought that the purpose of Open data platforms is that they 
have multiple roles and capabilities.  

For example, if a community wished to have an OpenLV platform monitor their community, 
then the incremental cost to deploy Dynamic Thermal Ratings would be minimal as it would 
simply require the analysis package to be loaded onto the platform. Conversely, in cases 
where an OpenLV data platform has been loaded into a substation to enable Dynamic 
Thermal Ratings, then additional applications can be loaded on to create even more value. 
Examples of these additional use cases may be pre-fault detection of LV faults or apps to 
track the amount of low carbon technology that has been installed in a LV network. For 
these reasons, it would be misleading to decide that installation of the OpenLV platform 
should be justified on solely based on the value created by Dynamic Thermal Ratings.  

 

3.2 Which LV networks can benefit from OpenLV and why? 

The OpenLV network has shown distributed intelligence within 11kV/LV substations enables 
a diverse set of benefits cases. The specific benefits are dependent on either the structure 
of the network or alternatively the needs of customers connected to those networks.  

Evidence from Method 1 shows that use of real-time asset monitoring can provide two clear 
routes to aiding network operations. Use of the data available within the substation to 
calculate the state of assets in real-time, removing uncertainty inherent in the existing 
passive network, allows Operators to push assets harder than they can at present, with the 
knowledge that the asset is able to withstand the additional load.  Removal of uncertainty 
with regard to network assets, reduces the risks associated with that uncertainty. 

Additionally, the ability of distributed intelligence platforms to automate decision making, 
in accordance with logic agreed by the Control Team can provide the benefits of LV 
Automation to the DNO / DSO without introducing further data transmission costs, and the 
risk of information overload in Control Rooms were there a requirement to manually initiate 
or authorise every LV operation. ‘Reporting by exception’, where the system has identified a 
situation occurring that is outside of expected operational parameters allows attention to 
be focussed where it is most effective. 

The next SDRC (SDRC 5) will investigate the costs and benefits of fitting OpenLV into 
substations onto the quantitative basis.  
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3.3 Next Steps 

The next project deliverable will be SDRC 5 which considers the overall cost-benefit case of 
OpenLV and how it might be best employed to create industry value. 

In addition to this next step, WPD has already announced that they are committed to 
maintaining the offer of community data by installing a number of EA Technology VisNet 
units that will be installed into substations. 

 

3.4 Criterion Compliance 

Table 8 provides a summary of the SDRC criterion that is expected for this milestone and 
where evidence is provided for its completion.  

Table 8: SDRC Criterion & Evidence Compliance Matrix 

Successful Delivery Reward Criterion Section(s) 

Sharing the level of capacity uplift achieved through 

Method 1 

Section 2.3.5 

Sharing which LV networks can benefit from OpenLV and 

why 

Section 2.3.5 

Establishing the level of capacity uplift that can be achieved 

in WPD’s licence area and across GB 

Section 2.3.5 

Sharing how DNO’s can engage with communities who 

want to become part of a smarter grid to exploit the open 

and flexible nature of OpenLV 

SDRC 4 – Method 2 

Sharing how community engagement supports the uptake 

of LCT 

SDRC 4 – Method 2 

Outlining the routes communities can take to raise funding SDRC 4 – Method 2 

Sharing the network benefits provided by community 

engagement 

SDRC 4 – Method 2 

Sharing how DNOs can engage with companies (including 

non-energy companies) and academics to exploit the open 

and flexible nature of OpenLV 

SDRC 4 – Method 3 

Sharing how the Method facilitates non-traditional 

business models 

SDRC 4 – Method 3 
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4 List of Annexes 

1. Annex SDRC 4.A1: Fault Current and Protection Studies for Alvin Installation 
This document details the analysis undertaken on the Method 1 Phase 2 trial 
networks to verify the proposed network meshing was acceptable from network 
safety and operational perspectives. 

2. Annex SDRC 4.A2: OpenLV Solution Factory Acceptance Test Stage 2 Documentation 
The document details the tests undertaken on the OpenLV trial hardware,  
operational logic and control software prior to deployment as part of the project. 

3. Annex SDRC 4.A3: Post-FAT Loadsense Analysis 
This document provides additional detail to support the Stage 2 Factory Acceptance 
Tests (FATs) undertaken at EA Technology’s Capenhurst Offices on July 12th, 2018. 
These tests demonstrated the successful control of the Alvin Reclose™ hardware by 
the LVCAP™ platform but it was not practicable to provide the detail necessary to 
explain the operation of the Loadsense application. 
The report provides a ‘walkthrough’ of the operation process of the Loadsense 
application, and details the data gathered, generated and utilised, to drive the 
behaviour demonstrated in the Stage 2 FATs. 

4. Annex SDRC 4.A4: OpenLV Measurement Points 
This document lists the measurements which are made by the OpenLV hardware and 
published on the LV-CAP Data Marketplace so that Applications running in the 
substation can make use of them. 

5. Annex SDRC 4.A5: Thermal Monitoring & Thermodynamic Modelling of Distribution 
Transformers 
This report assesses a strategy for the future adaptability of distribution 
transformers under scenarios where EVs are introduced. As part of the investigation, 
modelling of distribution transformers is undertaken and a configurable algorithm 
developed allowing calculation of Distribution Transformer Hot Spot Temperature 
from measurable readings. 
This algorithm was utilised in the OpenLV Project Trials. 
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Appendix 1. Distribution of LV Network Templates in WPD 
Licence Areas 

In total, the network data for 146,297 substations was analysed covering all four licence 
areas operated by WPD, assigning each an LV network Template type. 

Table 9: LV network Template Types in WPD 

LVNT Types Total % SWEB SWAE MIDE EMEB 

1 3365 2.30% 918 624 1518 305 

2 35803 24.47% 8252 2306 9981 15264 

3 61042 41.72% 18072 17316 20188 5466 

4 935 0.64% 96 243 402 194 

5 5799 3.96% 2049 1409 1670 671 

6 2583 1.77% 777 47 1377 382 

7 3491 2.39% 799 600 1129 963 

8 4649 3.18% 693 684 1106 2166 

9 5540 3.79% 672 61 387 4420 

10 23090 15.78% 6080 5015 4687 7308 

Total 146297   38408 28305 42445 37139    
26% 19% 29% 25% 

 

There is a high dominance of Type 2 & 3 networks across the four licence areas, although 
they are not evenly distributed across the four licence areas, as shown more clearly in 
Figure 23. 

 

Figure 23: LV network Template Types by WPD Licence Area 
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Mapping the assigned LV network Templates against the transformer ratings across the four licence areas managed by WPD provides the 
following allocations. 

Table 10: Allocation of LV network Template Type by Tx Rating 

 

 

Figure 24: Allocation of LV network Template Type by Tx Rating 

LVNT Type Total % of LVNTs 1 4 4.5 5 10 15 16 20 25 45 50 75 100 150 200 250 300 315 500 750 800 815 1000 1250 1500 1600 30000

1 3365 2.30% 0 0 0 0 0 0 0 0 1 3 16 0 325 0 31 18 496 419 1621 132 201 0 102 0 0 0 0

2 35803 24.47% 0 1 0 53 194 1209 1059 733 3703 336 6835 16 7564 17 3969 38 2029 2582 4604 231 449 0 181 0 0 0 0

3 61042 41.72% 0 25 36 2085 1130 11546 12888 718 9907 142 7034 4 4310 17 1993 41 2311 2403 3963 125 243 1 120 0 0 0 0

4 935 0.64% 0 0 0 0 0 0 0 0 0 0 0 0 100 0 1 1 21 20 238 86 298 0 170 0 0 0 0

5 5799 3.96% 0 1 2 58 95 841 704 125 1128 8 1258 1 701 0 206 7 173 166 318 0 5 0 2 0 0 0 0

6 2583 1.77% 0 0 0 1 2 12 19 26 94 78 134 0 990 1 540 0 19 39 180 64 207 0 177 0 0 0 0

7 3491 2.39% 0 0 0 0 0 1 1 15 20 12 95 1 340 8 438 15 380 459 1036 84 376 0 203 0 6 1 0

8 4649 3.18% 0 0 0 0 1 0 4 0 16 0 43 0 38 0 12 10 249 960 1608 133 1024 0 549 0 2 0 0

9 5540 3.79% 0 0 0 0 0 3 4 1 17 18 53 0 127 1 239 7 465 1076 1826 542 767 0 393 0 1 0 0

10 23090 15.78% 1 10 11 517 245 2455 3495 364 3176 92 4680 9 3433 1 1540 5 241 410 1411 228 425 0 341 0 0 0 0

Total 146297 1 37 49 2714 1667 16067 18174 1982 18062 689 20148 31 17928 45 8969 142 6384 8534 16805 1625 3995 1 2238 0 9 1 0

0.00% 0.03% 0.03% 1.86% 1.14% 10.98% 12.42% 1.35% 12.35% 0.47% 13.77% 0.02% 12.25% 0.03% 6.13% 0.10% 4.36% 5.83% 11.49% 1.11% 2.73% 0.00% 1.53% 0.00% 0.01% 0.00% 0.00%

Tx kVA Ratings in WPD
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The total capacity (kVA) within each licence area provided by the various transformer 
capacities is detailed below, including the determination by Small, Medium and Large Tier 
transformers as outlined in Section 2.3.2. 

Table 11: Tx capacities across WPD Licence Areas 

 

 

 

Figure 25: Distribution of Transformers by kVA Rating 

 
  

SWEB SWAE MIDE EMEB SWEB SWAE MIDE EMEB Total

1 1 0.00% 0 1 0 0 0 1 0 0 1

4 37 0.03% 0 37 0 0 0 148 0 0 148

4.5 49 0.03% 0 25 24 0 0 112.5 108 0 220.5

5 2714 1.86% 1048 1208 356 102 5240 6040 1780 510 13570

10 1667 1.14% 1053 11 520 83 10530 110 5200 830 16670

15 16067 10.98% 5299 4225 5874 669 79485 63375 88110 10035 241005

16 18174 12.42% 5751 8360 2997 1066 92016 133760 47952 17056 290784

20 1982 1.35% 1590 0 387 5 31800 0 7740 100 39640

25 18062 12.35% 5415 4122 6088 2437 135375 103050 152200 60925 451550

45 689 0.47% 569 1 119 0 25605 45 5355 0 31005

50 20148 13.77% 5206 2606 5456 6880 260300 130300 272800 344000 1007400

75 31 0.02% 5 0 2 24 375 0 150 1800 2325

100 17928 12.25% 2759 1552 7837 5780 275900 155200 783700 578000 1792800

150 45 0.03% 15 4 14 12 2250 600 2100 1800 6750

200 8969 6.13% 1572 1028 2475 3894 314400 205600 495000 778800 1793800

250 142 0.10% 88 4 21 29 22000 1000 5250 7250 35500

300 6384 4.36% 1535 1224 1792 1833 460500 367200 537600 549900 1915200

315 8534 5.83% 1664 1058 2175 3637 524160 333270 685125 1145655 2688210

Medium 500 16805 11.49% 3530 2151 4790 6334 1765000 1075500 2395000 3167000 8402500 8402500

750 1625 1.11% 465 44 111 1005 348750 33000 83250 753750 1218750

800 3995 2.73% 570 455 767 2203 456000 364000 613600 1762400 3196000

815 1 0.00% 0 1 0 0 0 815 0 0 815

1000 2238 1.53% 270 188 639 1141 270000 188000 639000 1141000 2238000

1250 0 0.00% 0 0 0 0 0 0 0 0 0

1500 9 0.01% 3 0 1 5 4500 0 1500 7500 13500

1600 1 0.00% 1 0 0 0 1600 0 0 0 1600

30000 0 0.00% 0 0 0 0 0 0 0 0 0

Total 146297 38408 28305 42445 37139 5085786 3161126.5 6822520 10328311 25397743.5 kVA

Transformer 

Tier Total %

10326578.5

6668665

Small

Large

Tx kVA Ratings in WPD Tx kVA Capacity in WPDTx kVA 

Ratings
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Appendix 2. OpenLV Project Locations – LV network Template 
Types 

LV-CAP™ ID SSID LV-CAP™ Method LVNT Type Tx Rating 

(kVA) 

Substation 
Type 

OpenLV-003 873105 Method 1 - Phase 1 9 500 Indoor 

OpenLV-004 941991 Method 3 1 800 GRP 

OpenLV-005 872983 Method 1 - Phase 1 6 500 
Outdoor 
(Fenced) 

OpenLV-006 432566 Method 3 7 1000 GRP 

OpenLV-007 873070 Method 1 - Phase 1 3 1000 Indoor 

OpenLV-008 872869 Method 1 - Phase 1 5 800 GRP 

OpenLV-011 872523 Method 1 - Phase 1 2 500 GRP 

OpenLV-012 872775 Method 1 - Phase 1 2 500 
Outdoor 
(Walled) 

OpenLV-013 910066 Method 1 - Phase 2 4 315 Indoor 

OpenLV-014 872522 Method 1 - Phase 1 2 500 GRP 

OpenLV-015 911800 Method 1 - Phase 1 1 800 Indoor 

OpenLV-016 330326 Method 1 - Phase 2 2 500 Indoor 

OpenLV-017 913081 Method 1 - Phase 1 2 300 
Outdoor 
(Fenced) 

OpenLV-018 881589 Method 1 - Phase 1 3 800 Indoor 

OpenLV-019 943885 Method 1 - Phase 1 9 500 GRP 

OpenLV-020 913075 Method 1 - Phase 1 2 315 Indoor 

OpenLV-021 890921 Method 1 - Phase 1 4 200 GRP 

OpenLV-022 890918 Method 1 - Phase 1 4 315 GRP 

OpenLV-023 905799 Method 1 - Phase 1 2 315 GRP 

OpenLV-024 873804 Method 1 - Phase 1 1 500 
Outdoor 
(Walled) 

OpenLV-025 911805 Method 1 - Phase 1 6 800 GRP 

OpenLV-026 331255 Method 3 7 300 Indoor 

OpenLV-027 525745 Method 3 5 315 Indoor 

OpenLV-028 316896 Method 2 / 3 2 500 Indoor 

OpenLV-029 511326 Method 1 - Phase 1 1 800 Indoor 

OpenLV-030 944493 Method 1 - Phase 1 6 800 GRP 

OpenLV-031 944114 Method 1 - Phase 1 4 315 GRP 



 

 

 Page 58 of 76  

SDRC 4 
LEARNING GENERATED FROM THE OPENLV PROJECT TRIALS 

LV-CAP™ ID SSID LV-CAP™ Method LVNT Type Tx Rating 

(kVA) 

Substation 
Type 

OpenLV-032 944751 Method 1 - Phase 1 6 500 GRP 

OpenLV-033 110048 Method 2 3 750 Indoor 

OpenLV-034 914721 Method 1 - Phase 1 4 315 GRP 

OpenLV-035 881585 Method 1 - Phase 1 5 750 Indoor 

OpenLV-036 330474 Method 2 2 500 Indoor 

OpenLV-037 513257 Method 1 - Phase 1 9 1000 Indoor 

OpenLV-038 941547 Method 1 - Phase 1 5 500 GRP 

OpenLV-039 943886 Method 1 - Phase 1 3 1000 Indoor 

OpenLV-040 512448 Method 1 - Phase 1 9 1000 Indoor 

OpenLV-041 332770 Method 1 - Phase 2 3 500 Indoor 

OpenLV-042 331615 Method 1 - Phase 2 2 500 Indoor 

OpenLV-043 790327 Method 2 7 300 
Outdoor 
(Fenced) 

OpenLV-044 790518 Method 2 7 800 
Outdoor 
(Fenced) 

OpenLV-045 872111 Method 1 - Phase 1 3 300 
Outdoor 
(Walled) 

OpenLV-046 904298 Method 1 - Phase 1 6 500 GRP 

OpenLV-047 870634 Method 1 - Phase 1 6 800 GRP 

OpenLV-048 944301 Method 1 - Phase 1 4 315 GRP 

OpenLV-049 870635 Method 1 - Phase 1 2 500 GRP 

OpenLV-050 911748 Method 1 - Phase 2 4 500 Indoor 

OpenLV-051 872236 Method 1 - Phase 1 6 1000 Indoor 

OpenLV-052 942223 Method 3 9 500 Indoor 

OpenLV-053 872109 Method 1 - Phase 1 3 500 Indoor 

OpenLV-054 511209 Method 3 3 315 
Outdoor 
(Walled) 

OpenLV-055 896332 Method 1 - Phase 1 4 500 Indoor 

OpenLV-056 941546 Method 1 - Phase 1 1 800 
Outdoor 
(Walled) 

OpenLV-057 512058 Method 1 - Phase 1 7 315 GRP 

OpenLV-058 901498 Method 1 - Phase 1 4 200 Indoor 

OpenLV-059 896127 Method 1 - Phase 1 2 315 GRP 
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LV-CAP™ ID SSID LV-CAP™ Method LVNT Type Tx Rating 

(kVA) 

Substation 
Type 

OpenLV-060 512019 Method 1 - Phase 1 7 300 
Outdoor 
(Fenced) 

OpenLV-061 902435 Method 1 - Phase 1 2 315 GRP 

OpenLV-062 873803 Method 1 - Phase 1 1 500 
Outdoor 
(Fenced) 

OpenLV-063 901586 Method 1 - Phase 1 4 315 GRP 

OpenLV-064 332853 Method 1 - Phase 2 3 315 GRP 

OpenLV-065 942847 Method 1 - Phase 1 7 315 Indoor 

OpenLV-066 791195 Method 2 2 300 
Outdoor 
(Walled) 

OpenLV-067 912548 Method 1 - Phase 2 6 500 GRP 

OpenLV-068 942848 Method 1 - Phase 1 1 750 GRP 

OpenLV-069 791859 Method 2 7 315 
Outdoor 
(Walled) 

OpenLV-070 894954 Method 2 7 500 
Outdoor 
(Fenced) 

OpenLV-071 872776 Method 1 - Phase 1 4 800 Indoor 

OpenLV-072 513248 Method 1 - Phase 1 9 800 GRP 

OpenLV-073 314811 Method 2 / 3 2 500 
Outdoor 
(Fenced) 

OpenLV-074 915800 Method 1 - Phase 1 4 315 Indoor 

OpenLV-075 911747 Method 1 - Phase 2 4 315 Indoor 

OpenLV-076 160025 Method 2 / 3 7 800 Indoor 

OpenLV-077 881739 Method 3 3 800 GRP 

OpenLV-078 904299 Method 1 - Phase 1 6 750 Indoor 

OpenLV-079 160294 Method 2 / 3 7 500 
Outdoor 
(Walled) 

OpenLV-080 872071 Method 1 - Phase 1 6 1000 Indoor 

OpenLV-081 732105 Method 2 8 1000 Indoor 

OpenLV-082 912807 Method 1 - Phase 2 1 500 GRP 

OpenLV-083 526762_A Method 3 6 1500 Indoor 

OpenLV-084 910065 Method 1 - Phase 2 4 800 Indoor 
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Appendix 3. Simple Predictor for Transformer Hot Spot 
Temperature 

Relevant Data 

The purpose of this analysis was to see how well the estimate of Transformer Hot Spot 
Temperature, THS(e), from the University of Manchester algorithm (see Annex 5), could be 
predicted using a simple regression formula derived from the measured data. 

We began with separate datafiles for each of 10 transformers, each datafile comprising half-
hourly measured data for the period February to October 2019 along with estimated values 
of the Transformer Hot Spot Temperatures THS(e). Table 12 lists the relevant input data. 

Table 12: List of relevant input data 

Input Data Code Description Source 

Rating Transformer rating Known 

ALVIN  

Command 

Indicator of switched state (0 = unswitched, 1 = switched) Controlled 

Load Transformer loading  Measured 

RLoad Relative loading (= Load/Rating) Calculated 

Tamb Transformer Ambient Temperature Measured 

Tout Tamb for outdoor transformer Measured 

Tin Tamb for indoor transformer Measured 

Toil(m) Transformer Top Oil Temperature  Measured 

Toil(um) Transformer Top Oil Temperature (estimated using UoM 
algorithm)  

UoM 

Toil(e) Transformer Hot Spot Temperature (estimated using simple 
derived equation) 

EA Technology 

THS(um) Transformer Hot Spot Temperature (estimated using UoM 
algorithm)  

UoM 

cos(dayno) Day number Known 

cos(TOD) Time off day Known 

 

The ALVIN Command is included in the table because it was used in the cleaning-up process 
for the data. Rows of data either side of a switching event were often corrupted, and this 
was dealt with by deleting all such “switching rows”. Rows around midnight were also often 
corrupted and these were similarly deleted from the cleansed data. 

The cos(dayno) and cos(TOD) parameters were added to check whether the time of year or 
time of day affected the results in a way that was not already accounted for in the 
measured temperatures. They were found to have an insignificant effect. 
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All 10 of the transformers in the study were mounted indoors, so Tamb was always equal to 
Tin. 

From the parameters listed in Table 12, a useful derived quantity was found to be the 
relative load on the transformer, Rload, defined as the transformer load divided by the 
transformer rating.  

 

Regression Formula 

A series of multiple linear regressions were carried out using Minitab and it was quickly 
ascertained that with many of the parameters being related to each other, there was little 
to be gained from using more than 2 or 3 parameters. The best 2-parameter fit was 
obtained using Toil(m) and Load as the “independent” parameters, giving the following 
regression equation: 

THS(e) = 1.51(±0.02) + 0.953(±0.001) x Toil(m) + 0.0406(±0.0001) x Load 

This gave an R-squared value of 94% (i.e. 94% of the variation of THS(e) could be attributed 
to the regression).  

Alternativel, Tamb (instead of Toil(m)) and Load as parameters gives: 

THS(e) = 7.13 + 0.918 x Tamb + 0.0752 x Load (R-squared = 76.8%)  

Adding a third parameter (i.e. using both Toil(m) and Tamb as well as Load) gives: 

 THS(e) = 1.38 + 0.122 x Tamb + 0.862 x Toil(m) + 0.0449 x Load (R-squared = 94.3%)  

The R-squared values suggest that the [Toil(m)+Load] fit is much better than the 
[Tamb+Load] fit, which is not surprising since Toil(m) is a much more direct measure of THS 
than Tamb is. However, it is not obvious from the R-squared values whether or not the 3-
parameter [Tamb+Toil(m)+Load] fit is significantly better than the 2-parameter 
[Toil(m)+Load] fit.  

In an attempt to determine this, we looked at how well each of these regressions predicts 
the THS(e) values in the original data from the University of Manchester. This was done by 
calculating the differences (or errors) between the values of THS(um) and the fitted values 
obtained from the regression equation. Adding the squares of all these errors and then 
taking the square root gives an RMS (root-mean-square) error, which is effectively the 
standard deviation (σ) of the errors. If the distribution of errors is approximately normal, we 
would expect two thirds of the errors to lie within ± σ of zero and 95% of the errors to lie 
within ±2σ. 

Table 3 shows the RMS errors for the 3 fits discussed above. 

These indicate that the 2-parameter fit using Toil(m) is again much better (RMS = 1.71°C) 
than the 2-parameter fit using Tamb (RMS = 3.36°C), but also suggest, as with the R-squared 
values, that adding Tamb as a third parameter makes relatively little difference to the fits, 
reducing the RMS error from 1.71°C to 1.66°C. 
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Table 13: R-squared values and RMS errors for the 3 Load-based fits discussed above 

Parameters R-squared RMS error (°C) 

Toil(m) + Load 94.0%  1.71 

Tamb + Load 76.8%  3.36 

Tamb + Toil(m) + Load  94.3%  1.66 

 

One might expect transformer temperatures to depend on relative transformer loads 
(RLoad = Load/Rating) rather than actual loads, so regressions were also carried out with 
Rload replacing Load. In all cases, better fits were obtained, whilst adding Tamb as a third 
parameter gives a slightly greater improvement than it did with the Load fits. Table 14 
shows the results.  

The 3-parameter Rload-based fit gives an R-squared value of 96.1% and an RMS error of 
1.38°C compared with the 94.3% and 1.66°C for the 3-parameter Load-based fit in Table 13, 
whilst the 2-parameter Rload-based fit gave similar results to the 3-parameter Load-based 
fit. 

Table 14: R-squared values and RMS errors for the 3 Rload-based fits. 

Parameters R-squared RMS error (°C) 

Toil(m) + RLoad 94.3% 1.66 

Tamb + RLoad 89.6% 2.25 

Tamb + Toil(m) + RLoad  96.1% 1.38 

 

The corresponding Rload-based regressions are: 

THS(e) = 2.92+ 15.80 x Rload + 0.913 x Toil(m) (R-squared = 94.3%) 

THS(e) = 6.65 + 34.02 x Rload + 0.933 x Tamb (R-squared = 89.6%) 

THS(e) = 2.96 + 21.50 x Rload + 0.627 x Toil(m) + 0.349 x Tamb (R-squared = 96.1%) 

Thus, the best 2-parameter fit is [Rload + Toil(m)] and the best 3-parameter fit is [Rload + 
Toil(m) + Tamb]: 

THS(e) = 2.96 (±0.02) + 21.50 (±0.04) x Rload + 0.627 (±0.001) x Toil(m) + 0.349 (±0.001) x 
Tamb 
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Appendix 4. Analysis of Calculated Hot Spot Temperatures 

The formula derived in Appendix 1 above was then used to calculate the Hot Spot 
Temperatures for those transformers not part of the Method 1 Phase 2 trials. 

Due to the volume of data available, (an average of 200,000 datum points per unit per day), 
a refinement of the data used was required. 

For each day where the project has data available the highest recorded Top Oil 
Temperature was identified for each unit. For this timestamp, the Transformer Load, Top Oil 
and Ambient Temperatures were extracted. 

This allowed for calculation of the Hot Spot Temperature for each transformer monitored in 
the trials, at the point of highest Top Oil Temperature, on each day. It therefore calculates 
the highest temperature the Hot Spot reaches on each day, based on the load drawn by the 
connected local network and the Ambient Temperature, representing the ‘worst point’ of 
each daily cycle during normal network operation. 

Plotting these calculated Hot Spot Temperatures in relation to the % Loading, relative to the 
nameplate rating of each transformer produced the plot shown in Figure 26. 

 

 

Figure 26: Calculated Hot Spot vs % Loading 

It can be seen that whilst there are a significant number of points where the transformer 
loading exceeds the nameplate rating, there are only two points calculated where the Hot 
Spot is calculated to have exceeded the 98°C threshold. 

Considering the specific transformer ratings reveals more specific trends. 
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Transformers experience a range of Hot Spot Temperatures for the same loading, a data 
artefact resulting from varying Ambient Temperatures between individual locations, and 
from separate days. However irrespective of the transformer rating, the calculated Hot Spot 
Temperature is reasonably tight at lower loading levels, with increased variation occurring 
as relative loading increases. 

Evaluation of the distribution of points identified three groupings based on the transformer 
rating. 

• Small Tier Transformers – <500 kVA 

• Medium Tier Transformers – 500 kVA 

• Large Tier Transformers – >500 kVA 
 

 

Figure 27: Calculated Hot Spot vs % Loading (Tx Groupings) 

It can clearly be seen that the overall Hot Spot Temperature range is comparable across all 
transformer ratings but as the rating increases, the range of proportional loading within the 
dataset reduces. 

For the smaller tier transformers it can be seen that despite peak loading exceeding 150% of 
the nameplate rating on a number of occasions, the calculated Hot Spot Temperature only 
exceeds 85°C once, requiring a peak proportional load of 219% to reach 100°C. 

In contrast, however, a medium tier transformer in the medium tier range exceeds the 98°C 
threshold at 134% of the nameplate rating. This specific instance relates to July 2019, during 
the period where the highest temperature ever recorded in the UK occurred. The 
transformer is inside a GRP enclosure, the interior temperature of which reached 58°C at 
the same time. 
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None of the large tier transformers approached the 98°C threshold, although it is 
acknowledged that there was only one recorded instance where the transformer utilisation 
exceeded the nameplate rating. 

The range of data points reduces as the transformer capacity increases, with both a reduced 
tendency for higher utilisations to occur at higher ratings, and a tighter range of resulting 
Hot Spot Temperatures. 

This characteristic is due to the lower thermal mass of the lower rated transformers when 
compared to the higher rated units. Lower rating transformers gain and dissipate heat more 
easily than larger ones, but accordingly are more susceptible to the temperature of the 
surrounding environment. 

Generating a best fit for the three tiers of transformer ratings allows for the extrapolation 
of an average capacity increase for the transformers monitored in the OpenLV Project 
through the use of DTR. This calculation provides an estimate of the instantaneous peak 
loading that could be achieved by the transformers utilised in the OpenLV Project when 
experiencing the same Ambient Temperatures as occurred in the duration of the project. 

 

 

Figure 28: Forecasting Tx Hot Spot Temperatures 

Solving the above formulae defined above for a Hot Spot value of 98°C, provides a 
theoretical peak loading for each tier of transformers, if utilising the algorithm developed by 
the University of Manchester in comparable environmental conditions to the original data 
set. 
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Table 15: Instantaneous DTR Rating 

Tx Tier Instantaneous DTR Rating 

Small (<500 kVA) 224% 

Medium (500 kVA) 149% 

Large (>500 kVA) 184% 
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Appendix 5. Variation of Calculated Hot Spot Temperature with 
Surrounding Temperatures 

 

Figure 29: Calculated Tx Hot Spot by Surrounding Temperature (-5°C < T < 60°C) 
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Figure 30: Calculated Tx Hot Spot by Surrounding Temperature (T > 60°C) 

 

Figure 31: Calculated Tx Hot Spot by Surrounding Temperature (25°C < T < 30°C) 
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Figure 32: Calculated Tx Hot Spot by Surrounding Temperature (20°C < T < 25°C) 

 

Figure 33: Calculated Tx Hot Spot by Surrounding Temperature (15°C < T < 20°C) 
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Figure 34: Calculated Tx Hot Spot by Surrounding Temperature (10°C < T < 15°C) 

 

Figure 35: Calculated Tx Hot Spot by Surrounding Temperature (T < 10°C) 
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Appendix 6. Headroom Benefit of LV Switching 

 

Site ID Rating (kVA) Uplift (%) Uplift (kVA) Site ID Rating (kVA) Uplift (%) Uplift (kVA)

1 007 1000 -0.39% -3.9 003 500 0.79% 3.9 1500.0 0.00 1500.00 100.00%

2 008 800 -0.017 -13.8 005 500 2.76% 15.4 1300.0 1.55 1301.55 100.12%

3 080 1000 0.026 26.0 051 1000 -2.60% -26.0 2000.0 0.00 2000.00 100.00%

4 053 500 0.096 47.8 045 300 -15.94% -47.8 800.0 0.00 800.00 100.00%

5 040 1000 -0.004 -4.5 029 800 0.56% 4.5 1800.0 0.00 1800.00 100.00%

6 037 1000 -0.010 -9.6 072 800 1.19% 9.6 1800.0 0.00 1800.00 100.00%

7 047 800 -0.055 -44.3 049 500 8.87% 44.3 1300.0 0.00 1300.00 100.00%

8 071 800 0.042 33.6 012 500 -6.73% -33.6 1300.0 0.00 1300.00 100.00%

9 024 500 -0.027 -13.4 062 500 2.69% 13.4 1000.0 0.00 1000.00 100.00%

10 055 500 -0.035 -17.5 059 315 5.57% 17.5 815.0 0.00 815.00 100.00%

11 63 315 0.012 3.8 58 200 -2.43% -4.9 515.0 -1.03 513.97 99.80%

12 015 800 0.009 7.2 025 800 -0.90% -7.2 1600.0 0.00 1600.00 100.00%

13 023 315 -0.078 -24.5 061 315 7.77% 24.5 630.0 0.00 630.00 100.00%

14 068 750 -0.033 -24.6 065 315 7.81% 24.6 1065.0 0.00 1065.00 100.00%

15 056 800 0.004 3.1 038 500 -0.62% -3.1 1300.0 0.00 1300.00 100.00%

16 018 800 0.047 37.6 035 750 -5.01% -37.6 1550.0 0.00 1550.00 100.00%

17 022 315 -0.033 -10.5 021 200 5.27% 10.5 515.0 0.00 515.00 100.00%

18 020 315 -0.007 -2.1 017 300 0.69% 2.1 615.0 0.00 615.00 100.00%

19 031 315 -0.015 -4.8 048 315 1.53% 4.8 630.0 0.00 630.00 100.00%

20 39 1000 -0.010 -10.0 19 500 2.00% 10.0 1500.0 0.00 1500.00 100.00%

21 57 315 -0.013 -4.1 60 300 1.38% 4.1 615.0 0.00 615.00 100.00%

22 084 800 0.033 26.3 013 325 -8.08% -26.3 1125.0 0.00 1125.00 100.00%

23 030 800 -0.029 -23.5 032 500 4.71% 23.5 1300.0 0.00 1300.00 100.00%

24 034 315 -0.211 -66.6 074 315 21.15% 66.6 630.0 0.00 630.00 100.00%

25 078 500 -0.007 -3.4 046 750 0.46% 3.4 1250.0 0.00 1250.00 100.00%

26 042 500 -0.016 -8.1 016 500 1.62% 8.1 1000.0 0.00 1000.00 100.00%

27 064 315 -0.083 -26.2 041 500 5.24% 26.2 815.0 0.00 815.00 100.00%

28 082 500 0.001 0.5 067 500 -0.10% -0.5 1000.0 0.00 1000.00 100.00%

29 050 500 -0.064 -31.8 075 315 10.11% 31.8 815.0 0.00 815.00 100.00%

30 50 500 -0.030 -15.0 75 315 5.00% 15.8 815.0 0.75 815.75 100.09%

Revised 

Capacity
% of originalPair ID

Site 1 Site 2 Original 

Capacity

Overall 

Variation
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Appendix 7. Transform Model 

The Transform Model®. tool was commissioned and built as a deliverable of the Smart Grid 
Forum, in consultation with the UK DNOs and other key UK industry stakeholders. The 
model offers an industry-recognised, robust, transparent and repeatable Methodology that 
has been tried and tested over the last 5 years by the GB regulator Ofgem and distribution 
companies across the world, including in Northern Ireland, New Zealand and Australia. In 
Great Britain, it was the sole driver of approximately £0.5bn of network investment in the 
latest regulatory price control period. Transform is: 

• A parameter-based model, which considers network archetypes that can be 
characterised by a finite number of prototypical (or representative) network 
elements 

• Based on real data from DNOs, government, academia, and a range of other sources 

• Able to assess and optimise investment over a range of conventional, ‘smart’ 
network and non-network solutions 

• Highly complex (48 moving parts), but consistent Methodology that can be repeated 
and validated. 

The Transform Model creates an understanding of the year on year investment required to 
maintain network reliability, considering the forecasted demand and uptake of Distributed 
Energy Resources (DERs)and other Low Carbon Technologies (LCTs).  

 

Figure 36: Transform Model Overview 

 

Methodology 

The figure below shows a high-level process diagram of the Transform Model Methodology. 
The following four subsections break this down, explaining in more detail the three stages 
of input configuration and the results that will come out of the model.  
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Once a network model is established with a baseline of capacity, scenarios describing future 
uptake of LCTs are added. When the network reaches a ‘capacity’ limit (which might be 
driven by overloading assets, voltage breaching statutory limits, or fault levels becoming too 
high), the model views its list of traditional network and smart non-network solutions, 
selecting the most economically efficient to relieve the particular constraint.  

 

Figure 37: Process diagram showing the Transform Mode® Methodology. 

 

Network 

The prototypical circuits in the Transform Model are broadly defined by: 

• Network topology (two possible types: radial or meshed); 

• Network construction (three possible types: underground, overhead, or mixed); 

• Location (urban/suburban/rural); 

• The type of customer (by building types, age, terraced/semi-detached/apartments 
etc.) 

For example, a representative circuit may be made up of rural, radial, overhead networks 
with a small number of farmsteads and detached homes. All these parameters will set the 
capacity of that archetype and also, its availability or potential to host low carbon heating 
and transport demand.  

 

Solutions 

The possible solutions for networks breaching their physical limits (whether thermal, 
voltage, fault level) range from traditional reinforcements - replacing the assets (cables or 
transformers) with new assets with larger ratings – or, more innovative solutions such as 
Demand Side Response, Active Network Management or Enhanced Automatic Voltage 
Control. The Transform Model® contains almost 100 pre-existing solutions. To populate new 
solutions, the information required includes:  

• Cost curves, lead time, flexibility, cross network benefits; 

• Which network limits they benefit (thermal, voltage, fault level); 
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• What types of network they can be applied on and if there are any other solutions 

which cannot co-exist? 

A large number of the innovative ‘smart’ solutions require some enabling technologies such 
as monitoring (whether bespoke network asset monitoring or access to smart meter data) 
and advanced control systems which may be used for multiple purposes. These are 
populated in a similar fashion to the solutions with a matrix to illustrate the relationship 
between the enablers and the solutions.  

 

Scenarios – LCT uptake 

This part of the model examines the new demand and generation from the electrification of 
transport and heat and the uptake of distributed generation. There are two components to 
this: 

• The daily demand profile 

• The annual uptake of LCTs 

There are currently 28 LCT profiles in the Transform Model - including 17 for EVs, 6 for 
heating and 5 for distributed generation. These profiles have been defined by looking at 
real-world data sets from the latest innovation projects such as Electric Nation, the world’s 
largest smart charging trial with almost 700 plug-in vehicle drivers providing charging data 
for an 18-month period.  

 

Cost-benefit analysis results 

The Transform Model will generate the annual capex and opex for each scenario entered. 
These figures will be based on the price of the solutions that will most cost-effectively 
ensure the networks do not exceed their limits in the forecasted time horizon. Hence, there 
will also be an output that describes the investment in each different technological solution. 
For the selected solutions the operational utilisation figures can also be obtained. 

The below table utilises the distribution of transformer ratings in WPD’s licence areas as a 
baseline, and calculates the number across the GB LV network, assuming the proportional 
distribution remains the same. 

Table 16: Extrapolation of Tx Distribution from WPD Licence Areas to GB 

Tx kVA Ratings Total 
(WPD) 

% 
(WPD) 

Total 
(GB) 

1 1  0.00% 7  

4 37  0.03% 244  

4.5 49  0.03% 324  

5 2,714  1.86% 17,934  

10 1,667  1.14% 11,015  

15 16,067  10.98% 106,167  

16 18,174  12.42% 120,090  

20 1,982  1.35% 13,097  

25 18,062  12.35% 119,350  
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45 689  0.47% 4,553  

50 20,148  13.77% 133,134  

75 31  0.02% 205  

100 17,928  12.25% 118,464  

150 45  0.03% 297  

200 8,969  6.13% 59,265  

250 142  0.10% 938  

300 6,384  4.36% 42,184  

315 8,534  5.83% 56,391  

500 16,805  11.49% 111,044  

750 1,625  1.11% 10,738  

800 3,995  2.73% 26,398  

815 1  0.00% 7  

1000 2,238  1.53% 14,788  

1250 -    0.00% -    

1500 9  0.01% 59  

1600 1  0.00% 7  

30000 -    0.00% -    

Total 146,297.00    966,700.00  

 

 



 
 

  

 

 

 


