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1. Executive Sumary

As the name suggests, the Electricity Flexibility and Forecasting ProjectinkB8s work

on forecasting.To purchase, arm and dispatch flexibility services effectively, Distribution
System Operators (DSOs) will need to assess future power dosvgheir network and this
requires forecasts for future load and generation \eswat different time horizonsSmarter

Grid Solutions (SGS) provided an assessment of forecasting methods for EFFS. This report
covers the validation testing carried out bgpitaacting as thédesignAuthority (CapitaDA)

on the methods and tool chain proposed by SGS.

CapitaDA has performed multiple simulations of forecasts using the SGS methodology on a
range of locationgn the WPD networkincluding GSPs, BSPsnmaries load customers and
generation customerand acrossthe time horizons envisaged by the project (hour ahead to
six months ahead)l'he results obtained were observed in terms of providing clarity on the
following questions:

91 Consistency of prediction accusaover time or a given locatiomnd time horizon;

1 Consistency of prediction accuracy for locations of the same type; and

1 Comparison oprediction accuracpetween types of location and time horizons.

Capita5'! Q&4 1S@ 20&SNII (A2 yasedbglowii KAd SESNOAAS |

1 The environment and modelsleveloped by SGSare based on open source
technology and can be independently replicated to obtaquivalent results when
appliedon the same locations

1 Introducing a data cleansing process prior to producing faec#s essential and
CapitaDA recommends that DSOs review their data quality and data collectian as
first step. A specific tool for dealing with outliers and missing values is not part of the
SGS toolchain and will need to be developed separately bg;DSO

1 The model consistently met the defined acceptance criteria for a number of BSPs
and primaries, even for the longer time horizons. It was observed that these
locations had adequate data quality and a visible load pattern that could be
replicated by the rodel,

1 For other types of locatigrit was typically observed that the underlying behaviour is
more random and the model could only meet acceptance criteria for the shortest
time horizons;

1 The quality of forecasts is highly dependent on the underlying bebawof the
location andCapitaDA recommends that forecasts need to be optimised location by
location (vs. applying general rules for the same type of location);

1 Optimising a forecast foa specific locationvould first of all require adequate data
guality, followed by observation of the underlying behaviour and experimentation
with input features and model parameters (e.g. length of training data used). This
functionality can be built into the toolchain and would be reasonable to perform
given the speedfahe XGBoost model.

In terms of transition of forecasting to a BAU proces$&mitaDA believeghe toolchain
provides a starting point that can be adopted and applied by DNOs without the need for
extensive specialised knowledge of forecasting. Furtlinéon is needed to optimise the
models for a specific location and time horizon. Finally, DSOs will need to estabbsa a
I/O process to host the data and the forecasting models.
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2. Introduction

2.1. EFFS Project Background

Western Power Distribution (WP currentlyworking on theOfgem Network Innovation
Competition (NIC) funded project Electricity Flexibility and Forecasting System (EFFS), with a
projected end date of January 2021. Tisi® keyprojectin their transition from Distribution
Network Opeator (DNO) to Distribution System Operator (DSO) and has the following
objectives:

1 Enhance the output of the Energy Networks Association (ENA) Open Networks

project, looking at the higtevel functions a DSO must perform, provide a detailed

specificationof the new functions validated by stakeholders, and the inclusion of

specifications for data exchange,;

Determine the optimum technical implementation to support those new functions;

Create and test the technical implementation by developing software and

integrating hardware as requirednd

1 Use the testing of the technical implementation, which will involve modelling the
impact of flexibility services to create learning relevant to forecasting, the likely
benefits of flexibility services and the impact ohanging network planning
standards.

= =

The EFFS project aims to design and implement a system which will allow the planning and
dispatch of flexibility services in operational timescales. To do so, EFFS will use forecasts of
generation and demand at specifietwork locations to drive the analysis of what those
patterns mean for the distribution network.

As part of the EFFS proje@PDis seeking the development of a forecasting sysiethnle to
provideforecass forload and generation at a range of timetemfrom an hour ahead tsix

months ahead at various points in the DNO networkhe intention of this project is to

provide reliable, repeatable forecasting methods and algorithms to support the
RSOSt2LIYSYyd 2F F2NBOI aid A ihd thedainihgahdimetdodd ol A & 2
algorithms will be transferable to the related NIC projects TRANSITION W8tOK

managed by Scottish and Southern Energy Network and Scottish Power Energy Networks
respectively.

Smarter Grid Solutions (SG&)sselectedas the forecasting partner ithis project anchas

explored a number of forecasting methadSGS has developed a toolchain that can be

applied across all locations and time horizons using the XGBoost algorithm. Their
methodology and results obtained are @alzY SY 1 SR A YW 2 NR S| aHbioyCc wS
referred to in the Related Documents section. This report should be read in conjunction

with the EFFS Forecasting Report.

2.2. Objectives andScope

Capitab ! €cape ofwork consisted otwo phases:

Phase 1¢ overseeiry model development This work w & LISNF 2NX SR R dzNAR
development work and involved:

1 Oversight of work performed by SGS in relation to EFFS project criteria and fitness
for purpose of the models developed;



WESTERN POWERﬁ FORECASTING VALIDATION TESTING R

DISTRIBUTION
EFFS

1 Testing interim models as released by SGSearsliring environment, models and
results can be replicated; and
f Providing feedback to SGS©@apita5 ! Q&4 FAYRAy 3Ia o

Phase Z; validation testing This phase of the projeetas performed once the final model
and EFFS Forecasting Report were released byaB&#volved validation testing of the
final SGS outpuiThe aim othe validation testing work described this report wago:

1 Replicate the environment used by SGS andure the notebooks supplied by SGS
run as intended

1 Replicate the results obtaindny SGS on the same data and using the same ntodels

o CapitaDA intended to independently verify that models supplied by SGS,

tuned and trained on the same data as used by SGS, yields equivalent

prediction accuracyand
o This ensures that the model methodololggts been successfully replicated
1 Apply theSGS modek® a wider sample of locations in the WPD network, including
o GSPs;
0 BSPs;
o0 Primaries to 33kV level;
o Generation customers; and
o Large load customers
1 Forecastthe parameters above acrosr the following time horizons:
0 Hour ahead (i.e. the next two hatiourly readings)
o Dayahead;
0 Week ahead,;
o One month ahead; and
o Six months ahead.
1 Apply the WPBRIefined accuracy evaluation methods to calculate the efficacy of the
forecastingmethods
1 For each of the setted locations and each time horizon:
0 Tune the XGBoost model once
o Perform multiple forecasting simulations at different points in time within
the data provided by WRRnd
0 At each simulation, train the model on past data, run predictions on unseen
data and measure forecast accura@gainst actual readings for the test
period.
1 Aggregate results over the simulations performed and observe:
o0 The range of prediction accuracies over the simulations;
o The variation in model performance across locations of the sSamdy; and
0 The variation in model performance between location families and between
time horizons.
1 Based on the analysis above, described the results observed in relation to:
o Conclusions drawn on how well the models perform on certain types of
location and time horizon;
0 Insights into possible reasons behind variations in model performance;
0 Recommendations for improvement in model performanaerd
0 Recommendations for implementation of forecasting by DNOs into BAU
processes.
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Aim of validation testing
Two ley requirements of the EFFS forecasting model are:

1. Repeatability by BOs and
2. Based on open source tools

With these in mindCapita5 ! Qa FANBRG Gl a1l ¢l a G2 NBLIE AONGS
ensure that models developed by SGfibe applied byCapta DA independently and yield

the equivalent outcome. SecondigapitaDA sought to verify that the models delivered by

SGS (when trained and tested on the same data asa®@3ising the same parameters)

yield equivalent results.

A further requirement othe design athority work is to support WPD (as well as oth&d3

and project stakeholders) in the adoption of the forecasting models in their BAU processes.
To this end, it is important to gain an understanding of how the models perform on a broad
sampék of network locations and at different points in time.

Some of the answers that the validation testing exercise sought to provide are as follows:

1 Consistency of prediction accuracy over timed given locatiomnd time horizon;

91 Consistency of predictioaccuracy for locations of the same type (e.g. BSPs) across
the network; and

1 Comparison ofprediction accuracybetween types of location (e.g. BSPss.
primaries) and time horizons (e.g. shderms vs. longerm).

To support this analysisCapita DA has dveloped a ealworld forecasting simulation
applying theSGS modehethodology on raw data provided by WPD. The model was applied
to a broader sample of locationsncluding GSPs, BSRsimaries, load customers and
generation customersacross all fiveime horizons envisaged by the project.

Validation estingwas performed ommultiple time-splits for each selected location and time
horizonO2 YO A Yl GA2Y AY 2NRSN) 42 aiavdzZ 4SS GKS Y2
time. The testing typically includedksimulations for émonth forecasts and 20 simulations

for allother time horizons.

Results of the validation testing were assessed in terms of the overall reliability and
robustness of forecasts and recommendations for adoption of forecasts into BAldgs&s
by DNOs.

Scope of validation testing
The scope o€apita5 ! Q& @t ARFiA2y (SaitdAy3a SESNOAAS A4

1 Consider a wider sample of locatioriacluding GSPs, BSPsinmaries, load
customers, generation customers, across all five forecasting tiorizons;

1 Use the XGBoost toolchain to predict active power in MW (reactive power in MVar
and other models out of scope due to time constraints);

1 Tuning the XGBoost model once for a specific location and time horizon
combination;

1 Run multiple trainingand prediction sets at different points in time to simulate a
realworld forecasting scenario, and report on observed results; and

1 Follow the SGS methodology without applying additional processes (e.g. data
preparation or introducing new features)

10
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2.3. Key Delverables
The key deliverables fdine workperformed byCapita DAvere:

1 This report detailing the results of the evaluation testing; and
1 Scripts showing thénput of raw data, model tuning, model train/tesimulations
and resultsobtained

It should benoted thatCapitaD®a $2NJ] 6l a F20dz;aSR 2y GKS | LL
2y 2t5Q0a N}Y¢ RIGF | y Bbtaied L&HNEIDAdIA 8oy perbin  NB a dzt
additional tasks that were not contained in the SGS toolchain, such deta cleasing
processesor performing multiple simulations on a single location in order to optimise
results. The modifications performed Bapita DAvere limited to:

91 Data I/O process in order to pass the relevant time series as inputs to the SGS

toolchain;and
1 Creating a set dime splits for each time horizon, and a loop that allows the model

to be retrained and rerun for each time split.

11
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3. OverseeingModel Development

3.1. DataPreparation

Capita DAwas supplied with raw data from WP&vering a large number of network
locations. The data typically contained readings in Hadiurly intervals, for the years 2014
2018.

The raw @ta wassplit into training and test setsyith the training data provided to SGS to
perform their modelling, and alloWapita DAo perform independentvalidation testing on
the complete data set, part of which was unseen by SGS.

3.2. Model Development

Capita DAollowed{ D{ Q Y2 RSt RS@St2LIYSyd &aLINAyid o0& &Ll
the modek developed are described below.

ARIMA¢ SGSpent seeral sgints developing and tuning the ARIMA modeIRlanguage

and attempted to reconstruct the modein Python. In some cases the ARIMA model
provided adequate results, comparable to XGBoost. The ARIMA models were ruled out of
final modellingandsome of thereasons for this were:

1 Long training times for longer time horizqgneakingthe model impractical for BAU
processesand

1 Significant usesskill andinteraction required to tunethe ARIMA model to each
specific use case, resulting inlaver degree of autmation compared to other
models

Capita DAvas not been able to fully replicate the ARIMA model in R due to the specialised

skills required in this specific domai@apita DRa @A Se ol a GKI GasowLa!
be resource intensive for DSOs to repgaadopt and maintain and thereforensuitable

from a fithess for purpose perspective.

XGBoost; this method was established by SGS to beefaahd moreflexible compared to

other methods Capita DRa @I f ARFGA2y (SadAay3a Oz2sdiiyA NYSR
adapted to different use cases and that tuning, training and prediction speeds were
satisfactory(typically a few seconds to train and predidiurther, the forecasting accuracy

was equal or better to the other models for each use case tesBaghin DAwas satisfied

with the fitness of purpose of XGBoost for the following reasons:

1 Model can be automated for tuning and trainipgedictions

1 The level ofuser interactionis significantly lower compared tARIMA and LSTM
Running and maintaining the rdel can be reasonably performed e.g. by an
engireer with basic to intermediatey®hon and statistics skitls

1 Tuning and training times allow for a large number of models to be perforomed
readily available hardware (e.g. all ©&pita DAvalidation testhg was performed on
a standard laptop computerand

1 Model could be applied to any of the data sour@egplored hence scalable across
the DNOnetwork.

LSTMc this method was explored by SGS and testedClapita DAThe key concern was
length of tuning andraining time, rendering the model impractical for BAU. Although LSTM
speed can be improved by running on G&lipped hardware, this was not explored

12



WESTERN POWER-/!E FORECASTING VALIDATION TESTING R

DISTRIBUTION
EFFS

further as the LSTM model did not offer tangible accuracy improvements over the XGBoost
method.

3.3. Potential Improvementsof the Forecasting Methodology
Data Quality

The SGS toolchain did not propose a data audit or data slegaprocess, as raw data was
used in model development and SGS base its work on a few selected use cases. In its
validation testing,Capta DAhas identified cases where data quality has clearly impacted
forecast accuracy and the toolchain did not include processes which would address this.

Capita DAelieves that data cleang will be necessary in BAU forecasting, however this is
a proess that will be dependent on the specific data used by individual DNOs and
developing robust methods for data clesimg are subject to further development and
testing by DNOs. For thigork packagethe focus was on developing and testing a suitable
forecasting method, rather than a complete etolend process.

Hyperparameter Tuningnd Automation
The toolchairdelivered by SGS included twgtRon scripts each within a Jupyter notebook

1 One for tuning XGBoost hyperparameters for a specific use case
1 One fa training the XGBoost model and performing predictions on a specific use
case

In performing validation testingCapita DAhas identified a number of downsides to this
approach:

1 In both notebooks the input data, features usednd dates need to be input
separately. This increases the chances of human error and slowen dibe
implementation of the modeland

1 Once the tuning is performed the hyperparameters need toeléered manually
into the training and forecasting notebookhis leaves room for improvemeim the
automation of the modet, e.g. a single notebook with the option to perform tuning,
with automated update of hyperparameters, would be more convenient for the
user.

A further analysis of the sensitivity of model performance to hyperparameter tuhas not

been explored in detdl KSy OS GKS dzaASNJ aSSa K&LISNLI NF¥YSi
and is not provided with tangible insight intbe importance or effect oparameters on the
model.Capita DAelieves that alefault set of hyperparameter®.g.for a location family or

time horizon,would bea convenient feature for the user to have as a starting pqietg.

selecting a set of hyperparameters that worked well for a location of the same type.

The XGBoost implementation notebook user catlen be easily amended to give the user
the option of either using a default set of hyperparameters, or switching on the option to
perform tuning and use the tuned hyperparameters instead

Accuracy Metric

Further, a number of different accuracy metricanche considered for measuring model
performance. In this case the reported metric is the acceptance critega §ection 4.3

based on the MAPE for consistency with the EFFS Forecasting Report. However during the
validation testing other metrics were cadgred, including the MAE in MW readings, as well

13
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as the MAE expressed as a percentage of the nominal transformer capBuogyarious
metrics carall be easily implemented in thBython notebook, with the user deciding which
option(s) to consider for théocation in question.

Feature Selection

TheSGSnethodology is not fully prescriptive on what feature@nstitute an optimal choice

for a specific location and leaves room for the user to dewtieh features might bemost

useful in explainingthe locath 2 yugHarlying behaviour The methodology does provide
some guidance as described in the EFFS Forecasting Report and implemented again in this
exerciseg(see Table 1)

1 Temporal features and holidapnly are used in the GSPs, BSPs, primaries and load
customers;

1 Wind dataand temperature areadded to the wind generation sites and some
temporal features (e.g. day of the week) and holislase removed.

In optimising themodelfor a specific locationCapita DAvould recommend exploring the
feature selectiom in more detail and in particular using the DSOs domain expertise in
understanding the factes driving the behaviour of the location in question (e.g. the type of
generation and load customers connected to the location).

Table 1. DefaultFeature Set by Type obtation

Type of Location

GSP | BSP | Primary | Wind Solar | Large Load
Farm | Farnt | Customer
Features [ |gloli]s Yes | Yes Yes Yes Yes Yes
VEEO RS Day of Week | Yes | Yes Yes No No Yes

L EETIES Quarter Yes | Yes Yes Yes Yes Yes
Month Yes | Yes Yes Yes Yes Yes
Year Yes | Yes Yes Yes Yes Yes
Day of Year Yes | Yes Yes Yes Yes Yes
Day of Month | Yes | Yes Yes Yes Yes Yes
Week of Year | Yes | Yes Yes Yes Yes Yes
Holidays Yes | Yes Yes No No Yes
Temperature No No No Yes Yes No
Wind Output No No No Yes Yes No
Wind Speed No No No Yes Yes No

In practice, the user could experiment by switching selected features on and off and start
0dzAf RAY3 (1y2¢ftSR3IS Fo2dzi ¢KI G FSFEGdzNBEa O2y i N
wind generation locations were tested using a number of penal features that are not
necessarily usefid in this case using fewer temporal features (e.g. month of year and time

! Solar farm not included in the validation testing exercise

14
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of day only) in addition to the wind features, might help make the model more robust and
less prone to overfit.

The implementation woldl be largely a manual process, where the feature set as set out in
the EFFS Forecasting Report and this report for different types of location are used as a
starting point, and the user would apply their judgement and domain knowledge in order to
modify the feature set and attempt to improve results. Capita DA believes that it is
necessary to perform more extensive testing in order to build sufficient results for concrete
recommendations.

Training Period for Different Time Horizons

As with feature section, the methodology has shown that the amount of past data used
for training influences model performance. Varying this parameter will likely lead to an
optimal outcome fora specific locationRunning the model through distinct set of (e.g. 2

3) training periods can again easily be implemented within the Python notebook as an
additional feature.

Recommended Proceder Optimising Forecasts for a Specific Location

With regards to optimising results for a given locati@apita DRa 2 JSNI ff NBEO2YY
is to extend the SGS methodology to cover a wider range of overall parameters. As
explained above, the XGBoost model hyperparameters are optimised, while the user needs

to decide on the training period and features used.

Capita DAecommended approach wddi be to combine data cleansing, featuselection
and modelparametrisationin a process that would help yield optimal results for a specific
location:

1. Examine data quality and check for outliers, extended periods of zero readings /
error codes
2. Apply a @ta cleansing process to the extent possigl€apita DAsuggest a number
of strategies:
a. Occasional outliers can be interpolated from existing data;
b.a2NB SEGSYRSR LISNA2R&a 2F W6l R RIFEGLFQ 6
manually avoided in the trainingath by reducing the training period to only
AyOf dzZRS W3I22R RIOF Qd ¢ KA & -tefrh Brecys&l y  dza 7
only;
c. {2adSYIFLGiAO LISNA2Ra 2F WolR RIEOGFEQ YI @&
be amendedirst before this location can be used ffmrecasting.
3. Once the data is cleansed (if possible), visually inspecbéimaviour to determine
the randomness of its behaviour. The user can expect-bedihvedlocations to
work reasonably well with default parameters, while more stochastic behawudur
likely require additional optimisation work;
4. Run a first set of simulations to observe results:
a. Set up the XGBoost model using default training length and feature set;
b. Apply tuning to obtain hyperparameters;
c. Selectthe most appropriate errormetrictd 2t t 26 6 dza SNDa RAaON
d. Run the model on several simulations through the data (e20 8imulations
as described in this report) and observe the range of results obtained on the
selected error metric;

15
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5. Observe the results and decide whether acceptaocteria are met (model is good
enough), omodel needs to be optimisefdirther;
6. If optimisation is needed:

a. Select a range of training lengths to try, and a set of features to be turned on
or off. For e.g. three different training periods and three faatsito test, this
would result in nine distinct combinations

b. Foreach of thecombinationsabove, un the model through simulations and
observe results;

c. Select the model where the acceptance criteria best met (the criteria for
best model selection WiR S LISy R 2 y préfekeScesdndl SoNdDbe e.g.
the model where the acceptance criteria are passed the most, or where the
variance between simulations is the least

7. Decide if the accuracy of the besiSNF 2 N¥Ay 3 Y2RSf YSSia (K
criteria to be used in a BAU process.

The above procedure is exhaustive and would help ensure that the model selected has been
optimised for features, training length and hyperparameters, and that it has been tested on
multiple simulations across the availabledyoof data.

Capita DAbelieves that building this functionality in the toolchain will require a limited
amount of additional work, while providing a systematic way of optimising the model for a
specific location. Applied one location at a time, it wouldddo a robust set of locatien
specific modelsinda knowndegree of accurackpr each one

Capita DAecommends that building models one location at a time is a prudg@proach

for DNOs. For application across a large number of locateffisiencies sbuld be sought

in automating the above process, which could be performed by e.g. by an engineer with
Python programming skills

3.4. Overall Fitness for Purpose

Although the toolchain can be improved furth€apita DAonsiders it to be fit for purpose
in reldion to objectives for the EFFS forecasting work:

1 The toolchain is based on open source technology and is replicable by DNOs

1 The model can be tuned and applied to any location in the network and provide
forecasts for all of the time horizons consideredi®ct to availability of past data)

1 The model tuning, training and prediction times allawecasting to be applied on a

large scale using readily available hardware

Capita DAvas been able to apply the toolchain to a wide sample of locations

Cases whre the model may perform better or worse have been observed and

documented and

1 Capita DAconsiders that DNOs will be able to integrate the toolchain into a téxa
process and use the toolchain to establish a continuous forecasting activity

= =
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4. Replicaton of Environment andResults

4.1. Technical Environment

The toolchaindeveloped by SG8&ins in an Anaconda environment. This ssts of a
distribution of the §thon language and libraries commonly used in data science, machine
learning, numerical computatioand visualisation.

Capita DAvas been able to replicate this environment, as well as additional libraries used in
the toolchain by following instructions as described in the EFFS Forecasting .Repuaith
similar open source tools, it edvisableto check versions of packages installed in order to
ensure the toolchain operates as intended.

SGS has also described in its report thstallation procedure andise ofa PostgreSQL
database for input and output of the forecasting data, including the TimeB&akxtension
to support time series data.

Capita DAIid not test or use this interface for its validation testing procedure tedefore

does notprovide any assessment of the 8geSQL and TimescaleDB setup in this report.
The choice of this setup fahe data input and output interface is left to individuaBDs to
make based on their own preferencekhe PostgreSQolution is an open source totiat
together with the TimescaleDB extension supports time series data as needed for the
forecasting.However, a variety of commorelational database solutions can be connected

to Pythonand therefore DSOs may decide to implement a different solution. In that case,
changedo the Jupyter notebooks would be required in the data 1/0O section, and typically a
library would need to be installed and imported to interface between the database and
Python

4.2. Use Cases and Test Scenarios

In the EFFS Forecasting Repd®GS haseported prediction accuracies in relation to
acceptance criteria for a total of seven use eaapita DAhas performed its validation
testing on six of the seven use cases and compared its results to those reported.by SGS

Table 2. Summary of Use Cases described in the EFFS Forecasting Report and tested by

Capita DA
Use . Time
Location : Featues Data Inputs & Sources
Case Horizons
Indian Queens GSP = Six Montls Hour Indian Queens SGP 180MW
Ahead Day of ek Indian Queens SGP 380MW
4x 240MVA Month Ahead Quarter Indian Queens SGP 480/W
Transformers Week Ahead = Month Indian Queens SGP 2801W
Day Ahead Year Bank holidays for England and Wiles
uc1 Forecasts are Hour Ahead  Day of Year
produced for each Day of Month
transformer, and an Week of Year
aggregate produced Holidays
by summing
individual
transformers.

2 http://www.calendarpedia.co.uk
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bise Location T|_me Featues Data Inputs & Sources
Case Horizons
Cardiff South BSP Six Montts Hour Cardiff SouthGRID 1Power MW
Ahead Day of Week Cardiff SouthGRID 2Power MW
2x 40MVA Month Ahead | Quarter Bark holidays for England and Wales
Transfomers Week Ahead | Month
uc2 Day Ahead Year
Forecasts are Hour Ahead @ Day of Year
produced for the Day of Month
aggregate BSP. Week of Year
Holidays
PrinceRock pimary Six Montls Hour PRINCE ROCKCB 27/19Power MW
Ahead Day of Week PRINCE ROCKCB 27/21Power MW
2x 17.25MVA Month Ahead Quarter Bank holidays for England and Wiles
Transformers Week Ahead = Month
ucCs Day Ahead Year
Forecasts are Hour Ahead @ Day of Year
produced for the Day of Motth
aggregate primary. Week of Year
Holidays
Truro BSP Six Montls Hour TRURO BSPCB 1TOPower MW
Ahead Day of Week TRURO BSPCB 2TOPower |
2xX 60MVA Month Ahead | Quarter (inverted as measurement appears °
Transformers Week Ahead | Month be in the wrong direction)
uc4 Day Ahead Year Bank holidays for England and Wales
Forecasts are Hour Ahead | Day of Year
produced for the Day of Month
aggregate BSP. Week of Year
Holidays
Llynfi Valleyorimary  Six Montls Hour LlynfiTrans 1Power MW
Ahead Day of Week LlynfiTrans 2Power MW
1x 12MVA Month Ahead Quarter Bank holidays for England and Wiles
1x 21MVA Week Ahead = Month
UC5 | Transformers Day Ahead Year
Hour Ahead  Day of Year
Forecasts are Day of Month
produced for the Week of Year
aggregate primary. Holidays
Goonhilly Wind Farm, Six Montlts Hour Goonhilly MW
the Lizard, Cornwall | Ahead Quarter Temperaturé
Month Ahead Month Wind Outpuf
12 MVA Capacity Week Ahead @ Year Wind Speea
o Day Ahead Day of Year
HourAhead Day of Month

Week of Year
Temperature
Wind Output
Wind Speed

3 .
Renewables Ninjahttps://www.renewables.ninja/- for The Lizard, Cornwall.
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4.3. Accuracy Metric and Acceptance Criteria

Prediction accuracy is calculated as the MAPE, explainethéyfollowing formula, as
specified by WPD and used by SGS:
. e b WO O MU QQQUDO QE &
OWWOol Bwuwp mm pTTT
0O woOowa
The results reported show the percentage of predictions that pass the given accuracy
threshold:

T ¥p p 3 i ONBEZEeBRORIR percentage of predictions in the prediction
time horizon that fall between 50% and 150% of the actual value (i.e. the pass rate
for the threshold)

1 WP 80% accuracy thresh@lfers to the percentage of predictions in the prediction
time horizon that fall between 80% and 120% of the actual value (i.e. the pass rate
for the threshold)

1 The reported figures are the pass rates averaged over the simulations performed by
SGS an@apitaDA

W5 A T T Sbs yhe fefeentage point differende the reported figures between
CapitaDA and SGS, i.e. how closely matched they are

The acceptance criteria are considered to be met when:

1 The 50% accuracy threshold is passed more than 80% of the time; and
1 The 80% accuracy threshold ssged more than@% of the time.

4.4, Comparison of Results

Capita DAhas applied the SGS methodology to the same use cases, and observed results
over the simulations. For each use case and time horizon combination, the XGBoost model is
tuned once, and simulations are run mple times at different points in time. At each
simulation the model retrains on a specified period of past data and runs predictions for the
specified time horizon.

The table belovehows a comparison of results achieved by SGS vs. those achie@egitzy
DA

Table 3. Comparison of accuracgportedby SGSand byl LIA Gl 5! Q& @I f ARI (.
on the same Use Cases

\ >50% accuracthreshold >80% accuracthreshold

UC1-GSP Reported Valldatlon leference Reported Valldatlon Difference
6 months 30.6 15.9 -14.8 11.9 -5.8

1 month 28.9 23.8 5.1 11.7 8.4 -3.3

1 week 25.1 33.6 8.5 9.4 14.6 5.1

1 day 31.0 25.6 -5.3 13.4 11.4 -2.0

1 hour 50.0 72.5 225 25.0 42.5 17.5
UC2— BSP Reported Valldatlon Difference Reported Valldatlon Difference

E e T

6 months 99.4 99.2 -0.2 79.2 87.1

1 month \ 99.9 98.8 -1.2 83.5 84.6 1.1

1 week | 998 99.5 -0.2 \ 92.1 91.1 -1.0
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1 day 100.0 98.3 -1.7 97.3 96.4 -1.0
1 hour 100.0 100.0 0.0 100.0 100.0 0.0
UC3- Prince Reported | Validation | Difference | Reported | Validation | Difference
B e R el

6 months 98.2 99.9 1.7 96.05 95.4 -0.6
1 month 100.0 99.7 -0.2 98.59 94.1 -4.5
1 week 100.0 100.0 0.0 99.33 98.6 -0.8
1 day 100.0 100.0 O 0 99 7 99.6 -0 1
1 hour 100.0 100 O 100 O

by SGS Testing by SGS Testing
6 months 69.0 48.9 -20.1 29.9 19.9 -10.0
1 month 73.5 52.3 -21.2 33.8 23.4 -10.4
1 week 73.4 64.1 -9.3 34.1 32.0 2.1
1 day 85.1 74.7 -10.4 45.5 44.1 -1.5
1 hour 100.0 100.0 0.0 52.1 95.0 42.9
primary by SGS Testing by SGS Testing
6 months 97.5 92.8 4.7 87.4 67.7 -19.7
1 month 97.7 93.9 -3.8 87.0 72.5 -14.5
1 week 99.0 98.0 -1.0 91.4 93.3 1.9
1 day 100.0 98.0 -2.0 98.5 93.3 -5.2
1 hour 100.0 100.0 0.0 100.0 100.0 0.0
Wind Farm by SGS Testing by SGS Testing
6 months 37.3 45.5 8.2 12.8 20.2 7.4
1 month 40.4 56.2 15.9 18.7 29.6 10.9
1 week 48.9 40.6 -8.3 27.5 15.3 -12.2
1 day 87.2 72.4 -14.8 71.7 36.7 -35.0
1 hour 87.5 86.8 -0.7 79.2 52.6 -26.5

The comparison of results reveahat, for use cases where prediction accuracy is high (e.g.
UC2), the results achieved by SGS @agdita DAare very close:

1 <2 percentage points for time horizonsone monthand below
1 7.9 percentage points for six months ahead

In use cases where pratiion accuracy is lower, the variation in results between SGS testing
andvalidationtesting isgreater¢ e.g. for UC4 hour ahead, 42.9 percentage point difference
is observed. This is explained by tless predictabldehaviour of this particular use case
which results ifless reliable predictions
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5. Results of Validation Testing

Capita DAextended its validation testing beyond the use cases covered by SGS, in order to
demonstrate model performance over a wider sample of locations. The results of this
exercise are summariseid this sectiorfor eachtype oflocation (i.e. GSPs, BSPsinaries,
generation customers and load customers)

5.1. GSPs
Table 4. Testing Parameters for GSPs

Tuning, Validation,

Location Time Horizons Features ) )
ForecastingPeriods

Data Inputs &Sources

GSP: Six Montls Hour Six Months Ahead: Indian Queens SGP 180/W
Indian Ahead Day of Week = 14-12-2015to 06-08-2018 = IndianQueens SGP 2&MW
Queens Month Ahead Quarter 6 simulations Indian Queens SGP 38MW
Landuph Week Ahead = Month Month Ahead Indian Queens SGP 480/W
Day Ahead Year 30-06-2014 to 1309-2018 Landulph Supergrid 180MW
Forecasts Hour Ahead | Day of Year = 20 simulations Landulph Supergrid 280MW
are Day of Month  Week Ahead Landulph Supergrid 38aMW
produced Week of Year 30-06-2014 to 2608-2018 Bank holidays for England ar
for each Holidays 20 simulations Wales
transformer. Day Ahead

01-06-2014 to 1906-2018
20 simulations

Hour Ahead

01-06-2014 to 1806-2018

Table 5. Simulation Rrameters forGSPs

Time horizon Tuning period Validation period No. of simulations

Six Months Ahead 11 months 12 months
Month Ahead 11 months 1 month 12 months 20
Week Ahead 11 months 1 month 12 months 20

Day Ahead 12 months and 3 1 week 13 months 20
weeks

Hour Ahead 12 nonths and 3 1 week 13 months 20
weeks

The GSPs tested includ&SP Indian Queens (UGHd GSP Landulphn each case, each
transformer within the GSP is modelled separately.

Training period

It can be observed that

1 The hourahead forecasts reach the 80% accuracy thoés on averagdy six out of
the seven transformes tested
1 The 50% accuracy threshdiés beenachieved on average for dahead forecasts
by four out of the seven transformers
1 The variation in results was significant in nearly all cases, hence evéounhahead
predictions need to be treated with cautipand
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1 The lack of prediction accuracy is explained by the high level of aggregation at GSP
level, meaning that any unpredictable behaviour further down the network will
propagate through to the GSP

A doser inspection of the predicted and actual values (section 6.1) reveals some additional
insight:

91 Data quality issues are present (e.g. extended zero readings in GSP Landulph TX2)
1 The daily pattern of a transformer can vary significantly and the XGRBom$t| does
not fully predict these variations (e.g. GSP Indian Quealay ahead)and
1 The actual readings do not vary around a steady mean, but can trend up or down,
and the XGBoost model does not fully incorporate these trends & Landph
TX2¢ 1 month, Median Caseg see Figure 4, Sction 6.).

Figure 1. Percentage of predictions passing the 80% accuracy threshold
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Figure 2. Percentage of predictions passing t®% accuracthreshold
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5.2. BSPs
Table 6. Testing Parameters for BSPs
Location Time Horizons  Features Tuning, \_/ekdatl_on, Data Inputs & Sources
ForecastingPeriods
BSP: Six Montts Hour Six Months Ahead: Cardiff SouthGRID 1Power MV
Cardiff Ahead Day of Week 14-12-2015 to 0608-2018 Cardiff SouthGRID 2Power MV
South Month Ahead Quarter 6 simulations MorritsonGRID 1Power MW
Morriston Week Ahead Month Month Ahead MorristonGRID 2Power MW
Truro Day Ahead Year 30-06-2014 to 1309-2018 TRURO BSPCB 1TOPower MV
Ludlow Hour Ahead Day of Year 20 simulations TRURO BSPCB 2TOPower MV
Day d Week Ahead Ludlow 33kVGT2CPower MW
Forecasts Month 30-06-2014 to 2608-2018 = Ludlow 33kVGT3Power MW
are Week of 20 simulations Bank holidays for England ar
produced Year Day Ahead Wales
for the Holidays 01-06-2014 to 1906-2018
aggregate 20 simulations
BSP. Hour Ahead
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Table 7. Simulation Rrameters for BSPs

Time horizon Tuning period Validation period

Six Months Ahead 11 months 1 month 12 months
Month Ahead 11 months 1 month 12 months 20
Week Ahead 11 months 1 month 12 months 20

Day Ahead 12 months and 3 1 week 13 months 20
weeks

Hour Ahead 12 months and 3 1 week 13 months 20
weeks

Capita DAested the XGBoost model on four BPBSP Cardiff South (UC2), BSP Ludlow
33kV, BSP Morriston and BSP Truro (UC3).mMddel performedbetter on BSPshan on

GSPs, as the behaviour at BSP level show more predictable patterns that allow the XGBoost
model to yield more robust forecasts.

Training period  No. of simulations

From results of the validation testing, it can be observed that:

1 The 80% accuracy threshold is reacledaverage by all of the four BSPs, for the
hour ahead time horizon;

1 The80% accuracy threshold is reached averageby three out of the four BSPs, for
week ahead anday aheadime horizons;

1 The 50% accuracy threshold is reached on average by threef thue dour BSPs, for
all time horizons;

1 Prediction accuracies generally improve with shorter time horizons.

A closer inspection of the predicted and actual values reveals further insight:

1 As an example, BSP Cardiff Southonth ahead shows a predictablesekly profile
that is closely predicted by the XGBoost model in the best and median cases;
however a change in pattern is observed over the Christmas / New Year period
(worst case);

1 BSP Truro exhibits more variation in intraday readings compared to ther &8Ps,
leading to lower accuracy. In this case understanding the underlying reasons for this
behaviour would be helpful in determining a suitable course of action for improving
predictions;

1 A poor set of predictions can be caused by error readings inrtieing data, e.qg.

BSP Morriston month aheadg Worst Case 8it 18 (see Figurel9, Section 6.2 The

data was affected by negative readings (likely to be error codes) in the training data,
forcing the model to learn wrong value&.data quality checls needed to flag cases
such as this one prior to predictions being performed

In the cases where aggregdtvel model performance is inadequate, it may be worth
experimenting with forecasts at transformer level, keeping in mind thasemay be easier
to adapt for nonstandard network configurations.
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Figure 3. Percentage of predictions passing tl8% accuracy threshold
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Figure 4. Percentage of predictions passing the 50% accuracy threshold
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Tuning, Validation,

Location Time Horizons Features
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Data Inputs & Sources

ForecastingPeriods

Primary: Six Montts Hour Six Months Ahead:
Prince Rock | Ahead Dayof Week = 14-12-2015 to 0608-2018
Kingsweston = Month Ahead Quarter 6 simulations
Evercreech Week Ahead | Month Month Ahead
Cardiff East = Day Ahead Year 30-06-2014 to 1309-2018
Llynfi Hour Ahead  Day of Year | 20 simulations
St Clears Day of Month = Week Ahead

Week of Year 30-06-2014 to 2008-2018
Forecasts are Holidays 20 simulations

produced for
the aggregate

Day Ahead
01-06-2014 to 1906-2018

primary. 20 simulations

Hour Ahead

01-06-2014 to 1806-2018
Table 9. Simulation Rrameters for Primaries

Time horizon

Six Months Ahead

Tuning period

Validation period

11 months 1 month

Training period

12 months

PRINCE ROCKCB 27/19Power M
PRINCE ROCKCB 27/21Power M
KINGSWESTONG&RBower MW
KINGSWESTON&®Bower MW
EVERCREECHPBwer MW
EVERCREECHPBwer MW
Cardiff EastGRID 1Power MW
Cardiff BstGRID 3Power MW
LlynfiTrans 1Power MW
LlynfiTrans 2Power MW

St ClearsTRANS 1Power MW

St ClearsTRANS 2Power MW
Bank holidays for England and
Wales

No. of smulations

Month Ahead 11 months 1 month 12 months 20

Week Ahead 11 months 1 month 12 months 20

Day Ahead 12 months and 3 1 week 13 months 20
weeks

Hour Ahead 12 months and 3 1 week 13 months 20

weeks

Vdidation testing was performed on siximaries: Evercreech, Kingsweston, Llynfi (UC5),

Prince Rock (UC3), Cardiff East and St Clears. Overall the XGBoost model performed best on

some of the primaries. The following @pgations can be made:

1 For threeprimaries Evercreech, Prince Rock and Cardiff East), éhelts exceeded
the 50% accuracy bengfark for all time horzons and in all simulations. The 80%

accuracy benchmark was reached for all time horizons on average, though some
simulations fell short oftte acceptance criteria;

1 St Clears is affected by error readings on one of the transformers throughout the
observed period, highlighting the need for a data check;

1 Kingsweston and Llynfi exhibit less predictable behaviour, hence results trail those of
the top three primaries. These are cases where a closer investigatiadheofactors
drivingunderlying behaviouwould be a natural next step.

A closer inspection of the predicted and actual values reveals further insight:
1 In the best modellegrrimaries (Eveneech, Prince Rock and Cardiff East), the model
is able to predict the general pattern and errors tend to occur in the daily peaks
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1 For the two more difficult cases (KBweston and Llynfi), it the patterns afar less
clearand there are periods of systetic prediction errors.

In the more difficult cases, it may be worth experimenting with transforhegel forecasts.

Figure 5. Percentage of predictions passing tl8% accuracy threshold
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Figure 6. Percentage of predictions passing the 50% accuracy threshold
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5.4. Generdion Customers

Table 10. Testing Parameters for Generation Customers

Tuning, Validation,

Location Time Horizons Features . : Data Inputs & Sources
ForecastingPeriods
Wind Farm: Six MonttsAhead | Hour Six Months Ahead: = Goonhilly MW
Goonhilly Month Ahead Quater 14-12-2015 to 0709- Rockhead MW
Rockhead Week Ahead Month 2017 Temperature
Day Ahead Year 6 simulations Wind Output
Hour Ahead Day of Year Month Ahead Wind Speed

Day of Month = 14-12-2014 to 1112-
Week of Year 2018
Temperature 19 simulations
Wind Output Week Ahead
Wind Speed 14-12-2014 to 0512-
2018
19 simulations
Day Aead
14-11-2014
to 06-10-2018
19 simulations
Hour Ahead
14-11-2014
to 06-10-2018
19 simulations

Table 11. Simulation Rrameters fo Generation Customers

Time horizon Tuning period Validation period No. of simulations

Six Months Ahead 11 months 1 month 12 months
Month Ahead 11 months 1 month 12 months 19
Week Ahead 11 months 1 month 12 months 19

Day Ahead 12 months and 3 1 week 13 months 19
weeks

Hour Ahead 12 months and 3 1 week 13 months 19
weeks

Validation testing was performed on two wind farms: Goonhilly (UC6) and Rockhead. For
these locations, wind speed and wind direction were added as features, basgataifrom

the website renewables.ninja ®fant to each wind farm site. It should be noted that his
data refers to actual wind data rather than forecasts available at the time of making the
predictions (therefore looking into the future)his is likelyd result in higher levels of
accuracy in the predicted wind output than if forecast data were used as weather forecast
error is likely to be a significant factoespecially for the longer timborizons.DSOs may

wish to explore introducing forecast weathdatain the features, if weather forecast data is
available to obtain from a supplier. Due to time constraints in this project, only actual
weather data was used.

Training period

Results of the testing show that only one of the wind farms could yield average forecasts
above the 50% accuracy threshold. On closer inspection of the actual and predicted data, it
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is clear thebehaviour is unpredictable and the model is struggling to identify any reliable
pattern. SGS recommended the use of engineering models, such as thaitsbée from the
renewables.ninja siterather than creating timeseries based forecastssing XGBoost for
predicting the output of renewable generation because of the known-inegar features of
this type of generation.

One idea for improvement may b® investigate the engineering models and the data
available to DNOs to select the most appropriate version of these models e.g. manufacturer
and type of turbine, heighof the nacelleabove ground levettc. If time-series forecasting is
used, a further lBernative might be to investigate whether the half hourly metering data for
generatorsprovides better accurachan the SCADA monitoring data.

Figure 7. Percentage of predictions passing the 80% accuracy threshold
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Figure 8. Percentage of predictions passing the 50%a@cy threshold
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5.5. Load Customers

SCADA Data

Table 12. Testing Parameters for Load Custome&CADA Data

Tuning, Validation,

Location Time Horizons Features

Data Inputs & Sources

ForecastingPeriods

Load Six Months Hour Six Months Ahead:
Customer Ahead Day of Week 17-12-2014 to 0909-2017
(SCADA) Month Ahead = Quarter 6 simulations

Jaguar Land | Week Ahead @ Month Month Ahead:

Rover Day Ahead Year 17-12-2014 to01-11-2018
Wymeswold  Hour Ahead  Day of Year 18 simulations

Week Ahead:
17-12-2014 to 08-04-2018
18 simulations
Day Ahead:
17-12-2014

to 15-12-2018
18 simulations
Hour Ahead:
17-12-2014

to 09-02-2018
18 simulations

Day of Month
Week of Year
Holidays

30

Jaguar Land Rovefl
Incomer MW

Jaguar Land Roveil2
Incomer MW
Wymeswold-
Astrazeneca/Quorn MW
Bank holidag for England
and Wales
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Table 13. SimulationParameters for Load idtomeis¢ SCADMData

Time horizon Tuning period Validation period No. of simulations

Six Months Ahead 11 months 1 month 12 months
Month Ahead 11 months 1 month 12 months 7-18
Week Ahead 5 months 1 month 6 months 7-18

Day Ahead 5 months 1 month 6 months 7-18

Hour Ahead 5 months 1 month 6 months 7-18

NB: Lower number of simulatiomsfers toJaguar Land Rovehe higher numbeito Wymeswold

Training period

For large load customer§apitaDA has considered two datsources¢ SCADA data and
Durabill data, as provided by WPD.

SCADA data contains continuous Hadfirly readings in the same manner as for GSPs, BSPs,
primaries and Generation Customers. Two customers were considedaguar Lath Rover
andWymeswold.

As an industrial consumer, Jaguar Land Réslaws a predictable load profile and can be
modelled to exceed the 50% accuracy threshold for all time horizem3VVymeswold the
general pattern isalso identified by the modelhowever the peaks are not sufficiently
accurate.Wymeswold accuracy is penalised by the MAPE error metric when readings are
close to or equal to zero (which occurs for a significant proportion of the time for this
particular customer).

Figure 9. Percentage of predictins passing the 80% accuracy threshold
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Figure 10.  Percentage of predictions passing the 50% accuracy threshold
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Durabill Data
Table 14. Testing Parameters for Load CustomeBurabill Data

Time Tuning, Validation,

Location . Features . y
Horizons ForecastingPeriods

Load Customer Day Ahead Hour 14*00 MPANSs:
(Durabill) Hour Ahead @ Day of Week @ 03-05-2016 to 2106- 14*00
14*00 Quarter 2016 14*08
14*08 Month 3 simulations 14*05
14*05 Year 14*08 11*58
11*58 Day of Year  08-10-2016 to 2611- 11*59
11*59 Day of Month 2016 11*94
11*94 Week of Year 3 simulations Bank holidays for Englan:
Holidays 14*05 and Wales

29-10-2017 to 1612-

2017

3 simulations

1100039604358

14-04-2017 to 0106-

2017

3 simulations

11*59

24-10-2016 to 1212-

2016

3 simulations

11*94

23-11-2017 to 1001-

2018

3 simulations

Data Inpus & Sources
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Table 15. Simulation Rrameters for Load idtomers ¢ DurabillData

No. of simulations

Time horizon Tuning period Validation period Training period

Day Ahead 1 month

1 month and

1 week

Hour Ahead 1 month 1 week 1 monthand 3
1 week

Durabill data also records hdiburly readings, however the readingsthe data provided

are not continuous and seem to be recorded only for specific time periods (e.g. one day in a
week oron set datedor each month)Thismay reflect banges to the customer data within
Durabill as customers categorised by Elexon as having profile claB8sas\e to hakhourly
settlement Previous analysis using this data has not encountered issues with the
completeness of datasets and it is likelyttkflze customers that have traditionally been half
hourly metered (the 100kW market) would have good quality data. In terms of EFFS only the
largest customers are likely to be connected at 33kV and above, which would exclude
former profile class B customes. Capita DAasidentified six customers with a sufficient
body of data to allow fotuning, training and testingour ahead and day ahead forecadits

these cases the tuning and training periods were reduced, as per the simulation parameters
above

It is observed that all six eniits passed the 80% accuracy threshold for hour ahead
forecass, and all six passed the 50% accuracy threshold for day ahead forecasts.

The key recommendation here would be twalidate the assumption that those load
customers that would require forecasts would have good quality, continuous data
collection As it stands, most casesnsidered lacked the continuous past data required for
forecasting.

Figure 11.  Percentage of predictions passing the 80% accuracy threshold
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Figure 12.  Percentage opredictions passing the 50% accuracy threshold
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6. CGomparison of Predicted vs. Actual Values

The following charts show a comparison of predicted and actual readings for a selection of
simulations performed. For the locations used in testing, the chémsvsa best case, worst
case and median case to help visualise the variation in results obtained and demonstrate
the impact of facotrs such as data quality and predictability of the underlying behaviour

The charts are designed to help the user visualiseimber of aspects in the forecasting
process, including:

1 Evidence of issues with data quality;
1 Observablgatterns in the underlying behaviour;
1 Quality of predictions
o0 Where the model has performed well;
o Where errors occur;
o What range of prediction accucg is observed for a set of simulations (i.e.
the Best case, Worst Case and Median Case)

The most evident observation from these charts is that the poorest predictions are usually
caused by data quality issue$or example where there is a clear offsettiween actual and
predicted values, the cause is likely to be zero readings or error codes in the training data
that bias the modelThe recommendation here is to first check the training data for errors.

If the errors occur in one part of the dataset, itagnbe possible to shorten thi&aining
history in order to train the model on the valid data ongxamples of evidence afata
quality issues are:

1 Periods of zero readings in GiS&hdulphTX2 and TX4 bias the model,
1 Spikes of negative readings (possikiyoecodes) in BSP Morriston;
1 BSP St Clears shows incorrect readings throughout the data;

Once data quality is excluded, some general observations can be made:

1 For GSPs, the models are able to extract aeg@npattern and daily range with
errors occurrig in the magnitude of daily peaksd changes trend,

1 For BSPs and primaries where the acceptance criteria are reached, a clear and stable
pattern can be observethat is correctly predicted by the model

1 For BSPs and primaries where the acceptance r@itare not reached, model
performance suffers where there is a change of pattern or direction (e.g. the daily
range of loadshifts up or down). Exploring with feature optimisation may help
improve performance, e.g. if the directional change is driven bpewable
generationg the same can be explored with GSPs, keeping in mind that they cover a
larger area

1 For wind farms, longeterm patterns are difficult to observe and the models are
only able to predict shofterm time horizonsOptimising the featuresetto remove
some of the temporal features may improaecuracy somewhat

1 Load customers vary between themases where the behaviour is stable and cyclical
will be reasonably well predicted by the model, with errors occurring again in the
magnitude of ddy peaks and changes in direction.
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6.1. GSPs

Figure 13.  GSR; Landuph ¢ TX4¢ sixmonths ahead
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Figure 14.
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Figure 15.  GSR; Indian Queens; TX4¢ weekahead
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