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1. Executive Summary 

Forecasting will play a key role in the Distribution Network Operator (DNO) to Distribution 
System Operator (DSO) transition. If DSOs are to manage their networks with the aid of 
flexibility services, the efficient use of these services is supported by the ability to assess 
where problems could occur and what level of service might be required to mitigate them 
ahead of need. The level of efficiency that can be achieved will be driven by the degree of 
certainty to which behaviour of demand and generation connected to distribution networks 
can be predicted.    

In this report, we explore the forecasting of real and reactive power flows at Primary 
substations, Bulk Supply Points (BSP), and Grid Supply Points (GSP) over different time 
horizons: six months ahead; one month ahead; one week ahead; one day ahead; and one 
hour ahead.  

The following methods were investigated using an agile approach that aimed to quickly 
identify promising methods rather than hand-tune a specific predetermined method: 

 Auto-Regressive Integrated Moving Average (ARIMA). A classic statistical modelling 
approach for building time-series forecasting models.  

 Long Short Term Memory (LSTM) Artificial Neural Networks. A specific type of deep-
learning neural network for learning patterns in time-series data.  

 Extreme Gradient Boosting (XGBoost). A machine-learning technique based on 
decision trees that has performed well in recent machine learning and forecasting 
competitions.  

The key outcomes from the forecasting development delivered within this part of the EFFS 
project include the following:  

 Model performance. For the majority of test cases, Extreme Gradient Boosting 
outperformed the other methods tested. Although, due to different data sets, a 
direct comparison with forecasting trials in Project KASM cannot be made, based on 
the same accuracy criteria, LTSM and XGBoost achieve in most cases, the 
performance requirements for EFFS. Details of the comparison can be found in 
section 7 but are summarised below. 

 Forecasting at different voltage levels and substation types. EFFS applied a series of 
techniques to GSP, BSP, Primary, Load and Generation customers across multiple 
time horizons. The high-level results include: 

o Techniques based on historical data work best on short time horizons (hour 
ahead and day ahead). This result is seen across most of the voltage levels, 
including load and generation customers.  

o For the Primary and BSP cases with low penetration of wind and solar, relative 
to yearly demand, a feature set containing only temporal trends will provide 
predictions with acceptable levels of accuracy; for higher penetrations of 
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renewables, predictions benefit from the addition of weather features to 
meet accuracy requirements.  

o For the GSP case, we selected a GSP including connected solar and wind 
generation capacities comparable to that of its total demand. The stochastic 
nature of the renewable generation made it more challenging to identify 
trends/patterns from historical data for the net real and reactive power flows 
at the GSP. By forecasting on an individual transformer basis and then 
aggregating the forecasts yielded better results. Although the results were 
only for a limited number of substations, this suggests to achieve the desired 
accuracy, DSOs may look build a large number of specific models to aggregate 
up to the GSP level.  

 The practicalities of using the techniques. The results for the performance of the 
techniques themselves are difficult to decouple from the skill of the data scientist 
building the model. Although the results do appear to show a clear benefit of the 
machine learning techniques over ARIMA, this should be treated with caution. With 
adequate time and skill, one technique could outperform another in the hands of the 
right data scientist. However, in assessing the different techniques, we have metrics 
such as training time, tuning time and forecasting time to give an indication of what 
would be involved to use these techniques at scale. This hints at a potential trade-off 
between accuracy and – given the way the underlying methods work – what can be 
automated, reducing the need to have large teams of data scientists to maintain a 
large set of forecasting models. Understanding model creation and maintenance will 
be key in how the DSO approach forecasting.  

The UK Power Networks (UKPN) Kent Active System Management (KASM) project assessed 
the accuracy of its proprietary ensemble forecasting method but using different metrics. 
While a direct comparison may be misleading as the data used was different, the EFFS 
results compare favourably when looking at the MAPE and RSME/Capacity figures achieved: 
 

 MAPE for Load: KASM-9% day ahead approximation, EFFS-3.5% month ahead 
average as highlighted in Table 1; 

 RMSE/Capacity for Solar: KASM-10% day ahead approximation, EFFS-8.4% day ahead 
average as highlighted in Table 47; and 

 RMSE/Capacity for Wind: KASM-16% day ahead approximation, EFFS-12.5% day 
ahead average as highlighted in Table 44. 

 
Furthermore, the results achieved in this project can be seen in the next table. Fields 
highlighted in green illustrate where the forecasters have been assessed to meet the criteria 
of greater than the target accuracy 80% of the time, which was the performance target set 
for the EFFS forecasting (see section 7.2 for details). It should be noted that KASM and EFFS 
used different data sets so the difference in performance may not purely be attributable to 
the underlying techniques used.  
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Summary of accuracy (%) results from forecasting methods described in this report.  

  Time Horizon 

Use Case Accuracy 
Six 

Months 
Ahead 

Month 
Ahead 

Week 
Ahead 

Day Ahead Hour Ahead 

UC1 – GSP 
>50% 30.61 28.89 25.07 30.95 50.00 

>80% 11.91 11.69 9.42 13.39 25.00 

UC2 – BSP 
>50% 99.42 99.94 99.78 100.00 100.00 

>80% 79.23 83.50 92.11 97.32 100.00 

UC3 – Primary 

 

>50% 98.23 99.98 100.00 100.00 100.00 

>80% 96.05 98.59 99.33 99.70 100.00 

UC4 – BSP 
>50% 68.99 73.48 73.41 85.12 100.00 

>80% 29.88 33.75 34.10 45.54 52.08 

UC5 – Primary 
>50% 97.54 97.74 98.96 100.00 100.00 

>80% 87.36 86.97 91.39 98.51 100.00 

UC6 – Wind 
Generation 

>50% 37.33 40.35 48.91 87.20 87.50 

>80% 12.76 18.68 27.49 71.73 79.17 

UC7 Solar 
Generation 

>50% 72.28 73.08 77.38 76.19 89.58 

>80% 58.16 54.70 52.68 60.12 62.50 

UC8 – Large 
>50% N/A 66.66 71.58 79.17 100.00 

>80% N/A 27.43 29.41 47.32 93.75 
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Implementing Forecasting Methods: an Open and Reusable Approach.  

A key part of the approach taken by the EFFS project team has been to aim for 
reproducibility of the methods by other parties. All of the forecasters detailed in this report 
were built using techniques that can be implemented using freely available open source 
libraries and implemented on a standard open source data science platform.   

To allow others to use, reproduce or even improve on the results of the UK-customer funded 
work in this project, the underlying forecasting tool-chain used by the project’s forecasting 
methods partner has been detailed in this report. This has been done at a suitable level to 
allow the TRANSITION and FUSION projects to implement specific forecasting models based 
on the same techniques for their licence areas. In these cases, the performance will be 
dependent on the quality and quantity of available data.     
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2. Introduction 

Western Power Distribution (WPD) is currently in the middle of its Ofgem Network 
Innovation Competition (NIC) funded project Electricity Flexibility and Forecasting System 
(EFFS), with a projected end date of January 2021. This project is key to their transition from 
Distribution Network Operator (DNO) to Distribution System Operator (DSO) and has the 
following objectives: 

 Enhance the output of the Energy Networks Association (ENA) Open Networks 
project, looking at the high-level functions a DSO must perform, provide a detailed 
specification of the new functions validated by stakeholders, and the inclusion of 
specifications for data exchange; 

 Determine the optimum technical implementation to support those new functions; 

 Create and test the technical implementation by developing software and 
integrating hardware as required; 

 Use the testing of the technical implementation, which will involve modelling the 
impact of flexibility services to create learning relevant to forecasting, the likely 
benefits of flexibility services and the impact of changing network planning 
standards.  

The EFFS project aims to design and implement a system which will allow the planning and 
dispatch of flexibility services in operational timescales. To do so, EFFS will use forecasts of 
generation and demand at specific network locations to drive the analysis of what those 
patterns mean for the distribution network.  

Forecasting is not a new art; statistical methods such as Box-Jenkins (auto-regressive moving 
average) have been used to build demand models for decades. However, forecasting tends 
to be highly skilled and requires teams of people to craft and maintain forecasting models. A 
world with diverse small scale to medium scale distributed energy resources interacting with 
specific local demand patterns means hand-crafted models may not prove practical.  

For EFFS, as well as assessing traditional methods, we have looked to recent advances in 
machine learning and assessed their practical application to forecasting for the timescales 
required by EFFS.   

As part of the EFFS project, WPD is seeking the development of a forecasting system. The 
ability to forecast load and generation at a range of timescales from an hour ahead to 
several months ahead will be an essential input to power flow analysis of the network that 
will highlight possible future network constraints which, depending on the timescale, may 
result in dispatching services already procured, or procuring services to be used in the 
future. Generation and demand forecasting is often rudimentary and disconnected from an 
integrated system. The intention of this project is to provide reliable, repeatable forecasting 
methods and algorithms to support the development of forecasting capacity. It is WPD’s 
intention that the learning and methods or algorithms will be transferable to the related NIC 
projects TRANSITION and FUSION, managed by Scottish and Southern Energy Network and 
Scottish Power Energy Networks respectively.  
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Smarter Grid Solutions (SGS) was selected as the forecasting partner in and this report 
outlines the selected and developed forecasting methods, with all necessary information 
and artefacts to allow for recreation.  

2.1. Objectives and Deliverables 
Forecasting plays a central role in the EFFS project, to serve as a high-quality input for power 
systems analysis, the output of which being used in flexibility service procurement decisions. 
The accuracy of forecasts and understanding likely variability is therefore paramount.  

SGS was contracted to provide forecasting for methods for input data for use in the wider 
EFFS project. The underlying forecasts are then used to drive power systems analysis that 
determines the effect of load and generation on the network, i.e. circuit flows through load 
flow analysis.   

The aim of  the work described in this report was to: 

 Use DNO data, along with additional data sources (e.g. weather data), to evaluate a 
set of different approaches to forecasting. 

o This includes the development of a database to store all the relevant data 
that is integrated with the forecasting methods.  

o Create a forecasting environment that uses a range of open source 
forecasting libraries to evaluate statistical methods, machine learning, and 
deep learning methods.  

o Apply these methods to the following forecasting applications: 
 Load, Power Factor, Generation, Generation Power Factor, Net Load / 

Generation, Maximum load and Maximum Generation at 33kV, 66kV 
and 132kV transformers; and 

 Load, Power Factor, Generation, Generation Power Factor, Net Load / 
Generation, Maximum load and Maximum Generation at 33kV, 66kV 
and 132kV connected customers. 

o Forecast the parameters above across for the following time horizons: 
 Intraday; 
 Day-ahead; 
 Weak ahead;  
 One month ahead; and 
 Six months ahead. 

o Apply the WPD-defined accuracy evaluation methods to calculate the efficacy 
of the forecasting methods. 

The key deliverables for the work detailed in this report  were: 

 A Toolchain for building forecasting models (based on open source technology); 

 Database schema, including data and test results; 

 Scripts to allow replication of results by the EFFS partners; and 

 This report gives details of the evaluation of methods and how to replicate the 
methods. 
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3. Forecasting Methods 

3.1. Background to Forecasting 
Forecasting is used when an estimate of uncertain future events is required, with the results 
primarily used to improve decision-making and planning activities. Forecasts that are 
produced almost always incorporate some degree of error, however, it is still beneficial to 
have the limited information provided by a forecast than to plan for the future in ignorance.  

There are qualitative forecasting methods based on soliciting opinions that are: 

 Focused on collecting opinions from industry stakeholders and experts, meaning 
they are subjective; 

 Useful when past data is unavailable to help inform future trends; and 

 Typically applied to medium and long range time horizons.  

An example of a qualitative forecasting method is the Delphi Method. This method uses an 
iterative technique that relies on input from experts. It is based on the principle that 
forecasts from a structured group will outperform those from an unstructured group. The 
experts answer questionnaires in rounds, and after each round, the questions are re-asked 
but an anonymised summary of responses from the previous round is also supplied. It is 
expected that by providing the information from all the experts the range of answers 
provided reduces, thus converging on a “correct” answer. This is typically applied in long-
range forecasting for technological advances1,2.   

Quantitative forecasting methods use explicit mathematical models to determine future 
trends as a function of past data. These methods are: 

 Useful when historical data is available and can be used as a reliable predictor for the 
future; and 

 Typically applied to shorter-term time horizons. 

Time series forecasting is important as so many prediction problems involve some temporal 
component. It is assumed that patterns are due to time, and historical data patterns are 
projected into the future. The time series can be broken down into component parts: level, 
trend, seasonal, cyclical, and random.  

The random component is unknown and unpredictable. The cyclical component is due to the 
longer term cycles and is difficult to identify, and so time series methods generally focus on 
the identification of all these components, for example, of the seasonal component – a cycle 
that repeats annually: the trend and level components. The trend component is the optional 
linear increasing or decreasing behaviour of the series over time, and the level component is 
the baseline value for the series if it were a straight line3.  

                                                      
 
1
 https://personal.ashland.edu/dlifer/internal/omlectureforecasting.pdf  

2
 https://www.gwern.net/docs/predictions/2001-armstrong-principlesforecasting.pdf 

3
 https://machinelearningmastery.com/time-series-forecasting/ 

https://personal.ashland.edu/dlifer/internal/omlectureforecasting.pdf
https://www.gwern.net/docs/predictions/2001-armstrong-principlesforecasting.pdf
https://machinelearningmastery.com/time-series-forecasting/
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There are a number of questions that also impact the forecasting and the effectiveness of 
the employed method. These include: 

 How much data is available and can it be gathered together in one place? More 
information can often be advantageous, allowing for greater opportunity to detect 
patterns.  

 What time horizon is the prediction required for? In general, shorter-term 
predictions are easier to achieve and with greater accuracy or confidence. The 
farther into the future the prediction is, the more difficult it is to accurately predict 
what the patterns may be.  

 Can forecasts be updated over time or must they remain static? If forecasts can be 
updated as more information becomes available, often the accuracy can be 
improved. However,  too much information can reduce this accuracy. Therefore, the 
concept of over and underfitting explains this balance.   

 At what time resolution is the forecast required? There is the potential to employ 
up/downsampling of data should a different resolution of forecast be required. 
Upsampling sees the creation of new data points when adapting low-resolution 
dataset (e.g. half hourly) to a high-resolution dataset (e.g. minutely). Downsampling 
is the opposite action.  

The importance of data in the forecasting process links to another concern for time series 
prediction – the quality of the data. Quite often some degree of data cleansing will be 
required. This can be due to bad or missing data in the dataset, or simply due to the fact the 
data is in a format or resolution not suitable for forecasting purposes. It is always worthwhile 
to spend some time scrutinising the input data to identify if there are erroneous values, 
errors in data logging and if outliers are credible.  

3.1.1. Underfitting/Overfitting 
In statistical analysis, overfitting is the production of an analysis which corresponds too 
closely or exactly to a particular set of data, and may, therefore, fail to fit additional data or 
predict future observations reliably4. Likewise, underfitting occurs when the method cannot 
adequately extract or identify trends in the data. This can appear in machine learning and 
can sometimes be referred to as over or under training. Overfitting can occur due to there 
being a mismatch between the criteria used for selection of the model and that used to 
determine the suitability of the model. An example of this is a model being selected for 
maximising its performance on training data, but its suitability may be determined by its 
ability to perform well on unseen data. Overfitting occurs when the model memorises the 
training data rather than learning to generalise from a trend5.  

When training a machine learning method the performance progresses from underfitting, 
where it is training with too little data or too few features, and does not identify key 
elements of the trends, to overfitting where too much information is provided. The optimal 

                                                      
 
4
 https://en.oxforddictionaries.com/definition/overfitting 

5
 https://towardsdatascience.com/overfitting-vs-underfitting-a-complete-example-d05dd7e19765  

https://en.oxforddictionaries.com/definition/overfitting
https://towardsdatascience.com/overfitting-vs-underfitting-a-complete-example-d05dd7e19765
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point lies between these two points, and the investigation of the impact of different 
quantities of training data and features will help the user determine what results in this 
optimal point.  

3.2. Investigation on Forecasting Techniques 

A time series ready for forecasting should allow decomposition into four basic constituents: 

 Level – baseline value that would correspond to the series if it were a straight line; 

 Trend – the increasing or decreasing linear slope of the time series over time; 

 Seasonality – the cyclical patterns of the curve over time; 

 Noise – the variability of the curve that cannot be explained by the model. 

Several questions condition what can be done with the data or how accurate the results will 
turn out to be: 

 Amount of data – more data generally allows for better forecasts and analysis; 

 Forecast horizon – shorter time horizons are easier to predict with greater 
confidence; 

 Frequency of historical data updates – models can be retrained as frequently as 
there are updates of the historical data and therefore the accuracy of the forecasts 
can be improved over time; 

 Required granularity – the frequency of the required output conditions down-
sampling or up-sampling actions that can be made in modelling. 

Before proceeding to forecasting it is also necessary to analyse the input historical data and 
oftentimes some data manipulation is required by cleaning, scaling or transforming the 
original dataset: 

 Frequency – when frequency is too high or too low or data points are unevenly 
spaced there may be a requirement to resample the data; 

 Outliers – wrong or extreme outlier values may need to be identified or handled; 

 Missing – missing values or gaps in the dataset may need to be interpolated or 
complemented with additional sources. 

In this analysis a spectrum of methods have been covered; both classical statistical methods 
and artificial intelligence based methods.  

Classical Statistical Method 

Classical statistical methods are rooted in inductive inference from data, where the 
likelihood principle drives the outcome from these methods.  

The classical methods analysed included Holt-Winters, exponential smoothing, moving 
average, Autoregressive Moving Average and Autoregressive Integrative Moving Average 
(ARIMA).  

Artificial Intelligence 

Artificial intelligence is where the role of inductive inference is placed in the hands of a 
machine implementing various types of machine learning algorithms.  
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Machine learning attempts to achieve an objective without the aid of specific instructions 
but instead determines patterns and relationships, hidden in data, to instruct its actions on 
achieving the objective.  

There are many machine learning algorithms, of varying approaches, since supervised 
learning approaches deal with building a mathematical model of a set of data that contains 
both the inputs and desired outputs, it provides a structurally sensible approach to the 
forecasting problem and was therefore selected as the algorithmic and modelling route.  

The application of machine learning for forecasting is not new. However, since the turn of 
this decade, the machine learning community has made inroads into a number of different 
problems. Advances in neural networks and decision trees for what is sometimes termed 
“Deep Learning” has resulted in improvements in performance in key problems, such as 
image recognition where results are so strong the problem could be almost considered to be 
solved. The same family of techniques can be turned to forecasting.   

Part of the way the machine learning community continues to make advances is through the 
use of benchmark problems and competitions to solve those problems. Forecasting 
problems feature in the machine learning community Kaggle6. Moreover, in the area of load 
forecasting, the IEEE’s Global Energy Forecasting competition7 (also run on Kaggle) has 
allowed a number of different techniques to compete against each other, including 
techniques which employ classical statistical models.  

The motivation to investigate machine learning was two-fold; firstly there was the success of 
specific techniques in the competitions above. National Grid ESO has also recently produced 
interesting results for solar forecasting using deep learning techniques8.  

Of the AI-Machine Learning based options, different formulations for the supervised learning 
problems were tested.  

 Neural networks: Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU) and 
Long-Short-Term Memory (LSTM). 

 Tree-based methods: Prophet and XGBoost. 

Initial probing funnelled these down to three relevant options: ARIMA as the best option 
among the conventional methodologies, Recurring Neural Networks with Long-Short-Term 
Memory as the alternative among Neural Network based models and XGBoost as the key 
reference in the tree-based approaches. 

3.2.1. ARIMA 

The Autoregressive Integrative Moving Average (ARIMA) model is a classical time series 
forecasting technique that results from a generalisation of different methods. ARIMA models 

                                                      
 
6
https://www.kaggle.com/ 

7
https://www.ieee-pes.org/ieee-pes-announces-the-winning-teams-for-the-global-energy-forecasting-

competition-2017 
8
http://powerswarm.co.uk/wp-content/uploads/2018/10/2018.10.18-Bruce-National-Grid-ESO-Deep-Learning-

Solar-PV-and-Carbon-Intensity.pdf 

https://www.kaggle.com/
https://www.ieee-pes.org/ieee-pes-announces-the-winning-teams-for-the-global-energy-forecasting-competition-2017
https://www.ieee-pes.org/ieee-pes-announces-the-winning-teams-for-the-global-energy-forecasting-competition-2017
http://powerswarm.co.uk/wp-content/uploads/2018/10/2018.10.18-Bruce-National-Grid-ESO-Deep-Learning-Solar-PV-and-Carbon-Intensity.pdf
http://powerswarm.co.uk/wp-content/uploads/2018/10/2018.10.18-Bruce-National-Grid-ESO-Deep-Learning-Solar-PV-and-Carbon-Intensity.pdf
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can be applied to cases where non-stationarity exists and the integrative part can be applied 
multiple times to eliminate the non-stationarity. 

The autoregressive component of the model establishes a relation where the forecasted 
variable regresses from its own lagged or historical values. The moving average term links 
regression error with a linear combination of error terms over time. The integrative 
establishes that some values result from differentiation of previous values. 

The ARIMA model is one of the most widely used forecasting techniques and has proven its 
value on many applications. Very often it is used in predicting load at a nationwide level. 
Accuracy levels are high when sufficient data scientist time is spent on modelling and tuning 
of the model. This means that for applications where a large number of forecasts are 
required, ARIMA, or other conventional methods, may not be the recommended option as 
they become impractical. 

In terms of development, ARIMA lacked more complete libraries in Python, the language 
selected for the project. As it is commonly known, R is the reference language for data 
science, but many libraries were ported and new libraries have been built for Python, 
allowing data science work to be conducted with Python.  

In the case of ARIMA, R is still more complete than Python and even though it was possible 
to produce results in Python with ARIMA, the quality of results was largely improved when 
deployed in R. So, for the particular case of ARIMA, R was used in the final testing. 

The advantage of using R was the possibility of applying Fourier transforms to capture 
seasonality patterns, which improves significantly the quality of results. It is necessary to use 
one Fourier transform per seasonality pattern that is being captured and the frequency of 
that season is not captured automatically by R, given the complex shape of the input profile. 
So, when importing the data it is necessary to save multiple copies of it, once per frequency, 
so as to extract the Fourier transform. Frequency in data science corresponds to the more 
general knowledge of period in other science fields, so frequency will be defined by the 
number of steps that form the season, e.g. for half hourly data frequency is 48 for capturing 
the daily pattern or 336 for the weekly pattern. 

The three parameters of the ARIMA model (p, q, d) are automatically computed by a built-in 
method in R when provided the input data and the external regressors. The external 
regressors are what in AI based methods are called features and in the case of R will consist 
of the Fourier transforms of the input time series and other relevant variables such as 
temperature. Dealing with external regressors for ARIMA requires more significant data 
preparation than in AI based techniques. 

A full theoretical background and tutorials for ARIMA development can be found in the 
references9,10,11. 

                                                      
 
9
 https://www.datascience.com/blog/introduction-to-forecasting-with-arima-in-r-learn-data-science-tutorials 

10
 https://people.duke.edu/~rnau/411arim.htm  

11
 https://www.kaggle.com/kailex/arima-with-fourier-terms  

https://www.datascience.com/blog/introduction-to-forecasting-with-arima-in-r-learn-data-science-tutorials
https://people.duke.edu/~rnau/411arim.htm
https://www.kaggle.com/kailex/arima-with-fourier-terms
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3.2.2. Long-Short-Term-Memory 

Long Short Term Memory (LSTM) is a type of neural network machine learning algorithm. 
Like all neural networks, it creates a series of relationship connections in the hidden layer 
(artificial neurons) between the data set inputs to determine possible outputs. Since one of 
the largest influential relationships for time series data is time, a neural net variant was 
created, called recurrent neural networks (RNN), where memory is introduced to the 
algorithmic structure, shown in Figure 1, to temporally link predictions made in the hidden 
layer with input data to improve output data predictions.  

σ 

σ 

Output 

Cell Matrices of weights of the 
input and recurrent 

connections

Sigmoid Functionσ 

Tangent Function

Key

φ 

 
Figure 1: Recurrent Neural Network Architecture 

The number of hidden layers, or neurons, can vary dependent on the amount of dependent 
or independent relationships that may or may not exist between the input data. This 
concept can be optimised, but in this section, it just needs to be understood that the hidden 
layer exists to hold these relationships.  

The LSTM algorithm improves on the recurrent networks problems, namely the exploding 
and vanishing gradient problems which do not allow recurrent neural networks to recognise 
important time series events for unspecified durations. The introduction of long term 
memory is illustrated in Figure 2. 
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Figure 2: Long Short Term Memory Architecture 

The architecture allows the LSTM to hold on to significant events (seasonal variations) while 
forgetting insignificant ones (erroneous data spikes). It is achieved by updating the cell state 
with a forget gate. Information, from previous intervals, can now be added or forgot by the 
cell state, where required, to improve the predictive ability of the cell: 

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ �̃�𝑡 

Where:  

𝑓𝑡𝜖ℝℎ: forget gates activation vector 

𝑖𝑡𝜖ℝℎ: input gates activation vector 

𝑐𝑡𝜖ℝℎ: cell state vector 

𝑐𝑡−1𝜖ℝℎ: cell state feedback vector 

𝑐�̃�𝜖ℝℎ: input modulation gate’s activation vector 

The superscripts d and h refer to the number of input features and the number of hidden 
units (neurons).  

The output of the forget gate tells the cell state which information to forget: 

𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) 

Where: 

𝑊𝜖ℝℎ𝑥𝑑 , 𝑈𝜖ℝℎ𝑥𝑑 , 𝑏𝜖ℝℎ: are the weight matrices and bias vector parameters.  

The input gate determines which information should enter the cells memory: 

𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 

and allows the addition of memory, with the modulation gate: 
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 𝑐�̃� = 𝜙𝑐(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) 

allowing for removing memory, creating a selectable input: 

𝑖𝑡 ∘ �̃�𝑡. 

Finally, the output gate determines which values should be moved on to the hidden layer:  

ℎ𝑡 = 𝑐𝑡 ∘ 𝜙𝑐. 

In all the previous operations, the activation functions enable the behaviour desired from 
the weights being produced in the matrices; the values themselves can be trained using an 
optimised algorithm to improve the outputs the cell makes to the hidden layer to improve 
predictions.  

Further reading material on LSTM is available in the reference12.  

3.2.3. XGBoost 

Extreme Gradient Boosting (XGBoost) is one of the most respected machine learning 
algorithms for supervised learning. It can tackle regression, classification and ranking 
problems. Gradient boosting techniques produce forecasts by creating an ensemble of weak 
prediction models, which in the case of XGBoost are decision trees. 

XGBoost like other gradient boosting techniques builds the final model in a stage-wise 
manner. Yet, it builds a more generic framework by optimising an arbitrary differentiable 
loss function, which allows control of overfitting and improves performance.  

XGBoost is being vastly adopted for its execution speed and the model performance. Existing 
libraries are widely supported in different platforms and allows parallelisation, distributed 
computing implementations, out-of-core computing for very large datasets and cache 
optimisation. 

Further reading material on XGBoost is available in footnotes13,14. 

3.2.4. Model Execution Method 

Both the machine learning techniques require the definition of a model that consists of 
several methods: 

 Creation of features – this is the step where the data that will influence the forecast 
is defined and prepared in the right format; 

 Training of model – in this step, the historical data and features are used in 
combination with the training model to fit the model to the data; the training model 
requires the definition of hyperparameters that condition the final performance of 
the prediction; 

                                                      
 
12

 Deep Learning with Python: Francois Chollet 
13

 https://blog.exploratory.io/introduction-to-extreme-gradient-boosting-in-exploratory-7bbec554ac7  
14

 https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/  

https://blog.exploratory.io/introduction-to-extreme-gradient-boosting-in-exploratory-7bbec554ac7
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/
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 Forecast model – using the fitted model, the length of the future prediction required 
is provided and the forecast is produced. 

In machine learning, a hyperparameter is a parameter whose value is set before the learning 
process begins. These contain the data that govern the training process for the prediction. 
The forecasting model considers three types of data: 

 Input data – this is the collection of individual time series profiles used to make 
predictions.  

 Model parameters – these are the variables the chosen model uses to adjust the 
data.  

 Hyperparameters – these variables are not directly related to the training data, but 
are used to configure the model.  

Hyperparameters are user defined and can be optimised using different techniques 
addressed in the next section. 

3.2.5. Hyperparamters for XGBoost 

The development of our XGBoost models was done in Python and using the XGBoost library. 
This library is quite complete and allows for multiple levels of analysis and validation while 
building confidence in the model being developed. Establishing a first XGBoost model proved 
to be simple and there are many tutorials online that help a less experienced user to 
accomplish that task.  

The following task of gaining confidence and improving the model takes some extra 
development work and testing. Given that XGBoost is very fast, testing becomes a 
streamlined process and many combinations of features and hyperparameters can be made. 

The most relevant hyperparameters were found to be the number of decision trees and the 
size of the trees. The number of trees is controlled by the n_estimators hyperparameter and 
the tests conducted in this project showed there is a big negative impact if this parameter is 
not large enough. The advantage of keeping the number of trees small is that the resulting 
model can be more easily audited by a human as decision trees are not black boxes. 
However, when the team attempted to keep the number of trees contained performance 
degraded and the benefits of the model being fully tractable do not overweight the loss of 
accuracy. It was also observed that for optimising this parameter there is a loss of speed as it 
can vary from a few trees to thousands, increasing exponentially the number of 
hyperparameter combinations. Therefore, there is a firm recommendation to use 1000 
decision trees for all models developed in the scope of this project. 

As to the size of each tree, this is controlled by the max_depth hyperparameter. This 
parameter provides good performance improvements and it is recommended that it is 
optimised between 1 and 20 layers per tree. 

Other relevant parameters that were being optimised, but where performance 
improvements were not so important were: 

 min_child_weight – When the tree partitions, if a leaf node results in a weight less 
than min_child_weight, then the building process partitions no more. The 
recommended range is 1-30. 
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 subsample – subsample ratio is used to avoid overfitting. It defines the proportion of 
random sampling of the training data before growing a tree. Normal range is from 0-
1, but to really avoid overfitting 0.7-1 was selected in the project. 

 gamma – Minimum loss reduction required to make a further partition on a leaf 

node of the tree. Possible range from 0-, but in the course of the project the range 
0.1-10 was used. 

 colsample_bytree – subsample ratio of columns when constructing a tree. Used 
range was 0.7-1. 

 reg_lambda – L2 regularisation term on weights. Defaults to 1 but can be changed, 
so range was set to 0-2.  

3.2.6. Hyperparamters for LSTM 

LSTM was implemented in Python via the Keras package library. It allows the abstract model 
present in Section Error! Reference source not found. to be implemented in software. The 
onstruction of the LSTM model consists of hyperparameters crucial to its ability to learn and 
predict outputs from a series of inputs. The most relevant hyperparameters for LSTM to 
improve upon the LSTM forecasting are: 

Neurons (Hidden Layer)- number of neurons that hold the relationships between the data, 
input as a range typically 0-100.  

Number of Hidden Layers – number of hidden layers to provide greater depth to 
relationships, typically one or two.  

Activation- behavioural functions associated with weights and bias matrices, selected from a 
list of functions, such as the sigmoid function that creates a weight between 0 and 1.   

Optimiser- optimises the weights and bias matrices to improved performance, there are 
many choices15.  

3.2.7. Hyperparameters Optimisation 

Artificial intelligence based techniques, LSTM and XGBoost, require the input of user-defined 
hyperparameters. These hyperparameters may vary with the case being analysed and so a 
good set of hyperparameters can improve the results significantly. While the training of the 
model is required for every new forecast, the tuning of hyperparameters does not need to 
be as frequent.  

The selection process is not trivial as there is a significant number of hyperparameters. 
Commonly applied methods are random search, matrix search or other heuristic based 
methods. These methods are either time consuming or have little guarantees of being near 
optimal options. 

To tackle this problem, Bayesian optimisation can be applied. Bayesian optimisation is a 
probabilistic model based approach for finding the minimum of any function that returns a 
real-value metric. The function being evaluated can be of any level of complexity. 

                                                      
 
15

 https://keras.io/optimizers/  

https://keras.io/optimizers/
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Optimisation is finding the input values to an objective function that yield the lowest output 
value. In machine learning, the objective function is multi-dimensional because it takes in a 
set of model hyperparameters. For simpler functions, the minimum loss can be found by 
trying different input values and verifying which set of values yields the lowest objective 
function result. This works reasonably well, while evaluations of the objective function are 
computationally cheap. For complex objective functions the number of evaluations should 
be reduced to the bare minimum. 

The case of LSTM is particularly benefitting of Bayesian optimisation, but XGBoost also sees 
large improvement in the tuning of hyperparameters.  

In the project, a library available for Python (but also other platforms), HyperOpt, was used. 
Hyperparameter optimisation was achieved using Bayesian optimisation with a tree-
structure Parzen estimator (TPE) search space approach. 

The tree-structured Parzen estimator is a sequential model-based optimisation method that 
sequentially constructs models to approximate the performance of hyperparameters based 
on historical measurements, and then subsequently chooses new hyperparameters to test 
based on this model. The TPE approach models P(x|y) and P(y), where x represents 
hyperparameters and y the associated quality score. P(x|y) is modelled by transforming the 
generative process of hyperparameters, replacing the distributions of the configuration prior 
with non-parametric densities. 

HyperOpt requires four major input methods to be defined and run: 

 Objective function – the objective function method defines the fit function and the 
metric to monitor in the optimisation process. 

 Search space method – this method defines the search space, including the 
hyperparameters to be optimised and their desired ranges. 

 Trials methods – optional method that initiates the structures for advanced analysis 
of results and auditing of optimisation process. This is not required in deployment 
mode, but very useful in the first steps of tuning with any new dataset. 

 Optimisation algorithm – defines the methods to be used in the optimisation 
process. 

With these four inputs, HyperOpt conducts the optimisation process in an automated 
manner and the final results should be used as hyperparameters for that dataset. 

The tuning process does not need to be run as frequently as the training process, due to 
hyperparameters adequacy to the dataset and not to the particular moment that is being 
forecasted, or the particular parameter being forecasted. 

When optimising hyperparameters, if possible the tuning set should be different from the 
training set to avoid overfitting. In this case, given the limited length of the datasets, the 
tuning set was defined as a subset of the training set. Even though this was done there were 
no signs of overfitting. 

The recommendation is that when deployment comes the tuning set is chosen as a separate 
time period from the training set. 
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In terms of recurrence, the tuning process does not require as frequent repetition as the 
training process. Training needs to be conducted every time there are data updates and a 
forecast for a subsequent period is sought. Tuning should be cyclically repeated but maybe 
once every month or quarter. Further research would be required to identify the best cycle 
for tuning. As long as the data trends remain similar the tuning process should be little more 
than a validation of the previous solution. 

3.3. Investigation on Features 

Having discussed the forecasting models and the process to optimise the hyperparameters 
there is only one additional key element required to build quality forecasts, the definition of 
a good feature set. 

A feature is a known variable that is used to inform the forecast of a variable for which only 
historical information is known. In case the feature is not known, forecasts of the feature can 
be used as a proxy, naturally taking a toll in the final accuracy of the forecast. Certain 
variables such as air temperature are widely forecasted with very high levels of accuracy, 
particularly in the shorter-term horizons. These variables are very useful as features in the 
prediction of other variables that have some sort of dependency on them. Electrical load and 
air temperature are commonly correlated, especially when electric heating and cooling 
systems exist. 

More generally, weather related data can improve the quality of a forecast in the electric 
power systems domain. Tests were conducted using more variables in addition to the air 
temperature, such as air pressure. Results were largely improved when multiple features 
were applied, but in practical terms, it does not seem reasonable to expect all of those 
features to be available and so that is not a recommendation of the project. 

Another technique was successfully tested which uses data manipulation to facilitate the 
training process of the forecasting methods. One hot encoding is a technique that models 
qualitative variables as binary variables. One very important example of application is the 
days of the week. Instead of labelling the day of the week by a number from 1 to 7, seven 
variables are created (Sunday through to Saturday) and for each, a 0 or a 1 is assigned. The 
sum of these variables per data point must always be 1, as a certain day cannot be, e.g., both 
Monday and Tuesday at the same time. Holidays are also modelled with binary variables. 

As final recommendations for feature selection, depending on the type of variable being 
forecasted some features might or might not be relevant. A good breakdown is as follows: 

 Load profiles – the most relevant features for these profiles are day of the week, day 
of the year, season, hour of the day, bank holidays and in cases where a meaningful 
correlation exists with temperature, the air temperature (or other available weather 
data).  

 Renewable Generation profiles – in this case, day of the week or bank holidays do 
not have an influence, but all other features may have as well as wind speed or solar 
irradiance. 

 Substation net flow profiles – as a combination of the above, all of the load indicated 
features should be relevant, as well as the dominant generation features for each 
specific case. 
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 Domain Knowledge: Where domain knowledge can be applied to identify patterns 
not identified in the aforementioned, features can be appended. 

Finally, when active and reactive power is being forecasted with XGBoost, a process of first 
forecasting the active power component and next using that forecast as a feature for the 
reactive power component was developed. This should be the order as the dominant 
variable is active power and not reactive power. In the case of LSTM, the cross impacts of 
the two variables can be withdrawn by the methods and therefore they can be forecasted at 
the same time, in which case this process does not apply. 

  



 

 
 

27 
 

FORECASTING EVALUATION REPORT 
 

4. Systemisation of Procurement & Development of Use Cases 

The DSOs aim is to procure, arm and dispatch services from distributed customer assets to 
ensure continued operational security and stability of the network. To ensure this the DSO 
must procure, arm and dispatch services in a timely manner which will involve modelling the 
network across multiple time horizons and voltage levels. The timings of the analysis are 
likely to be driven by the gate closure timings for various business processes e.g. the cut-off 
time to submit information to a certain market, accept bids, provide arming notifications, 
provide dispatch notifications, etc.  

To determine the requirements for flexibility services, credible outage conditions are 
assessed for a part of the network at a particular point in time. Power flow analysis is used to 
identify issues such as thermal overloads or voltages being out of the permissible range.  
Power flow analysis requires a model of the network that shows how the various 
transformers, switchgear, and cables are connected and also provides information on the 
impedances and ratings of these network components. To model the flow of power over the 
network, forecasted values for load and generation at all the relevant nodes within the 
network model must be provided. 

 
The power flow analysis may require some adjustments to be made.  For example where the 
networks for each voltage level are modelled separately, then the impact of adjustments to 
the load and generation at one voltage level, for example, to account for the use of flexibility 
services, may need to be reflected at other voltage levels.   Other interactions between 
voltage levels, including exchanging and blending forecasts with National Grid, should be 
considered.  

Where the contingency being modelled would result in generators being tripped off the 
network after a fault, then there is a need to use forecasts for the network loads that would 
occur without the contribution from embedded generation i.e. the Total Load rather than 
the Net Load.  

The SCADA systems will normally record the net load on the healthy network rather than the 
total load on a post-fault network, therefore, the total load forecast must be generated by 
creating a net load forecast and then adjusting this using a forecast of the output of the 
embedded generation.   The embedded generation that needs to be considered may also 
need to be aggregated across multiple voltage levels as the load at a  33kV Primary 
Transformer, say, will be reduced by embedded generation connected at 11kV or LV.  

Examples of the procurement task classes, the time horizon, modelling and input data 
required are shown in Figure 3 below, mapped by voltage level and time frame. Each task is 
broken down into three requirements that need to be satisified to achieved procurement via 
forecast: 

 The problem to be solved via procurement 

 Network Model Representation  

 Input Data for the model 
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Figure 3: Systemisation of Procurement - Exampl
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The figure presented is by no means exhaustive of the types of problems to be solved via 
procurement tasks, this will be developed during other parts of this project. Similarly, the 
physical modelling of the network to highlight the problems to be procured for will also 
require further investigation. What this document seeks to fufill is the task of forecasting for 
input data that will be associated with each procurement problem. To successfully achieve 
this, use case and test scenarios are developed to determine where forecasting for input 
data can be useful and where it is limited.  

4.1. Use Cases and Test Scenarios 

In order to develop forecasting models in a systematic way, it was necessary to establish a 
benchmark, therefore a sufficient number of Use Cases (UC) were developed. These use 
cases reflect the different needs for forecasting data and therefore consider different 
voltage levels and time frames as changing variables across the use cases. 

The four use cases were: 

1. UC1 – 6 months ahead, GSP study – forecasts for the subsequent 6 months will be 
provided in 30min time steps. 

2. UC2 – 1 month ahead, BSP study – forecasts for the following month will be provided 
in 30min time steps. 

3. UC3 – Day ahead, primary study – forecasts for the next 24h in 30min time steps. 
4. UC4 – Hour ahead, BSP study – forecasts for the next 2 half hours. 

Two forecast tests were proposed per use case and consist of different training sets for the 
same test set. Given that there are many different variables that can be changed to try to 
influence the quality of the results, the definition of the training periods for each of the use 
cases was decided in a way that allows drawing conclusions about the influence of the 
training set length on the results in each of the cases. 

The tuning and validation datasets were used first in the hyperparameter optimisation, then 
the training and test sets are used for the prediction.  

For each of the use cases, input data was provided in excess of the minimum set of data 
needed to forecast. When applying the different forecasting methods, the influence of using 
(or not) these extra time series was be analysed. 

Use cases 1-4 have been used throughout the development of the forecasting methods, 
since these contained load and generators of differing import and export behaviours. For 
more single type testing, use cases 5-8 were developed and included. The results from these 
tests are outlined in Section 7. For the single type testing there was a selection of generator 
types to choose from:  

 Solar; 

 Wind; 

 CHP; 

 Biomass; 

 Anaerobic Digestors; 

 STOR; and 
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 Battery. 

Each type was graphed and can be found in section 9: Appendix A. From the behaviour 
presented in the graphs and domain knowledge the generators were grouped by whether 
forecasting would provide a benefit. It was determined that where weather plays a key role 
for generation it would need to be forecasted due to the physical data that call be readily 
called upon to enable prediction.  

Where a generators export was dictated indirectly from weather, fuel availability, 
controllable dispatch or market forces, they would not be considered at this stage. This 
resulted in solar and wind forecast models to be developed whereas no model was created 
for CHP, biomass, anaerobic digesters, batteries, and STOR. However, the techniques and 
tool described in this report could be used to look for patterns and correlations between 
data and the profiles of these generators; for example, the correlation between STOR 
running and predicted solar and wind output reduction. 

4.1.1. UC1 – GSP, Six Months Ahead 

Type GSP 

Name Indian Queens 

Site location SW 93918 59012  
(50° 23′ 41.20″ N 004° 54′ 03.09″ W) 

Input data per transformer Active power (MW) 
Reactive power (MVAR) 

Full dataset filename Indian_Queens_GSP_Full.csv 

Dataset period 14/12/2014 – 15/02/2018 

Forecast test 1  

Tuning set (where applicable) 14/12/2014 – 12/11/2016 

Validation set (where applicable) 13/11/2016 – 13/12/2016 

Training set 14/12/2014 – 13/12/2016 

Test set 14/12/2016 – 13/05/2017 

Forecast test 2  

Tuning set (where applicable) 14/12/2015 – 12/11/2016 

Validation set (where applicable) 13/11/2016 – 13/12/2016 

Training set 14/12/2015 – 13/12/2016 

Test set 14/12/2016 – 13/05/2017 

 

4.1.2. UC2 – BSP, Month Ahead 

Type BSP 

Name Cardiff South Grid 

Site location ST 19840 74680 
(51° 27′ 55.41″ N 003° 09′ 19.19″ W) 

Input data (For each transformer) Active power (MW) 
Reactive power (MVAR) 

Full dataset filename Cardiff_South_Grid_BSP_Full.csv 

Dataset period 01/01/2014 – 15/02/2018 

Forecast test 1  

Tuning set (where applicable) 01/06/2014 – 31/05/2015 
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Validation set (where applicable) 01/06/2015 – 30/06/2015 

Training set 01/06/2014 – 30/06/2015 

Test set 01/07/2015 – 31/07/2015 

Forecast test 2  

Tuning set (where applicable) 01/01/2015 – 31/05/2015 

Validation set (where applicable) 01/06/2015 – 30/06/2015 

Training set 01/01/2015 – 30/06/2015 

Test set 01/07/2015 – 31/07/2015 

 

4.1.3. UC3 – Primary, Day Ahead  

Type Primary 

Name Prince Rock 

Site location SX 49800 54100 
(50° 22′ 03.29″ N 004° 06′ 47.98″ W) 

Input data ( for each transformer) Active power (MW) 
Reactive power (MVAR) 

Weather source Metoffice – 9001, Mount Batten 

Full dataset filename Prince_Rock_full.csv 

Dataset period 01/01/2014 – 15/02/2018 

Forecast test 1  

Tuning set (where applicable) 01/06/2014 – 23/06/2015 

Validation set (where applicable) 24/06/2015 – 30/06/2015 

Training set 01/06/2014 – 30/06/2015 

Test set 01/07/2015 

Forecast test 2  

Tuning set (where applicable) 01/04/2015 – 23/06/2015 

Validation set (where applicable) 24/06/2015 – 30/06/2015 

Training set 01/04/2015 – 30/06/2015 

Test set 01/07/2015 

4.1.4. UC4 – BSP, Hour Ahead  

Type BSP 

Name Truro 

Site location SW 80210 46794 
(50° 16′ 48.33″ N 005° 05′ 10.72″ W) 

Input data (for each transformer) Active power (MW) 
Reactive power (MVAR) 

Weather source Metoffice – 200324, Hendra, Truro 

Full dataset filename Truro_BSP_Full.csv 

Dataset period 01/01/2014 – 15/02/2018 

Forecast test 1  

Tuning set (where applicable) 01/04/2015 – 23/06/2015 

Validation set (where applicable) 24/06/2015 – 30/06/2015 

Training set 01/04/2015 – 30/06/2015 

Test set 01/07/2015 

Forecast test 2  

Tuning set (where applicable) 01/06/2015 – 23/06/2015 
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Validation set (where applicable) 24/06/2015 – 30/06/2015 

Training set 01/06/2015 – 30/06/2015 

Test set 01/07/2015 

4.1.5. UC5 – Primary 

Type Primary 

Name Llynfi Valley 

Site location SS 8718 8876 
(51° 35′ 11.04″ N 003° 37′ 46.92″ W) 

Input data (for each transformer) Active power (MW) 
Reactive power (MVAR) 

Weather source N/A 

Full dataset filename XGBoost_Input.csv 

Dataset period 01/01/2014 -  16/02/2018 

Forecast test All time horizons 

 

4.1.6. UC6 – Generator Customer-Wind Farm 

Type Generator Customer 

Name Goonhilly Wind Farm 

Site location SS 8718 8876 
(51° 35′ 11.04″ N 003° 37′ 46.92″ W) 

Input data from historian Active power (MW) 
Reactive power (MVAR) 

Weather source N/A 

Full dataset filename XGBoost_Input.csv 

Dataset period 01/01/2014 -  16/02/2018 

Forecast test All time horizons 

 

4.1.7. UC7 – Generator Customer-Solar Farm 

Type Generator Customer 

Name AYSHFORD COURT FARM 33kV SOLAR PARK 

Site location ST 04850 15130  

Input data from historian Active power (MW) 
Reactive power (MVAR) 

Weather source N/A 

Full dataset filename XGBoost_Input.csv 

Dataset period 01/01/2014 -  16/02/2018 

Forecast test All time horizons 

 

4.1.8. UC8 – Large Load Customer 

Type Primary 

Name Load 3 

Site location SS 8718 8876 
(51° 35′ 11.04″ N 003° 37′ 46.92″ W) 

Input data Active power (MW) 
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Reactive power (MVAR) 

Weather source N/A 

Full dataset filename XGBoost_Input.csv 

Dataset period 01/01/2014 -  16/02/2018 

Forecast test All time horizons 
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5. Development of Methods 

This section shows how to set up the toolchain before using worked examples to show how 
the XGBoost and LSTM forecasts are configured and used. The method to set up forecasts 
using ARIMA has been omitted as this gives inferior results to the two machine learning 
methods, and requires considerable user-in-the-loop interactions for training and execution.  

The toolchain is based on the Anaconda data science platform.  

5.1. Toolchain Set-Up 

There are a couple of conflicts and issues with the packages on the standard Anaconda 
install, this is due to quirks in the Tensorflow and Keras packages.  

For example, the standard Anaconda 3 python executable is presently 3.7 and Tensorflow is 
only compatible up to 3.6.6. Therefore Miniconda is required, a product of Anaconda, which 
allows the user to bolt together environments from the previous versions to achieve a 
working environment.  

To achieve a stable environment/Jupyter kernel the following steps in the following order 
must be undertaken. 

1. Go to https://www.anaconda.com/distribution/   
2. Download Anaconda for Windows 2018.12, Python 3.7 version, 64-Bit Graphical 

Installer 
3. Install Anaconda 3 64 Bit -make sure to place it in a sensible location, Anaconda likes 

to install in hidden files locations.  

The install should now be available in the Windows toolbar, Figure 4.  

 
Figure 4: Anaconda install in toolbar 

There is a requirement to update Anaconda with Miniconda to implement environment 
creation:  

4. Go to https://conda.io/en/latest/miniconda.html 
5. Download Miniconda 3 64 Bit  
6. Install Miniconda 3 64 bit 

Miniconda will supersede the Anaconda 3 prompt (figure above) so now when the Anaconda 
prompt is opened the following is visible, Figure 5.  

https://www.anaconda.com/distribution/
https://conda.io/en/latest/miniconda.html
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Figure 5: Anaconda Prompt 

To create the majority of the environment needed copy and paste the following instruction 
into the prompt: conda create --name effsEnv python=3.6.6 pandas matplotlib scipy scikit-
learn jupyter sympy ipykernel pip openpyxl  

 
Figure 6: Environment instruction 

Pressing enter will create the environment; it is important to include ipykernal, to make the 
Python environment available as a Jupyter Notebook.  

After the environment has been created, install the Statsmodels package independently. 

 
Figure 7: Statsmodels install 

For hyperparameter exploration, the HyperOpt package is required. 

 
Figure 8: HyperOpt install 

Then the Tensorflow package must be installed. Problems with the Conda installs have been 
experienced and this approach fixed the problem, Figure 9.  

 
Figure 9: Tensorflow install 

Finally, pip install keras in the same way.  

 
Figure 10: Keras install 
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Again, for hyperparameter exploration for LSTM, the Hyperas version 0.4 must be installed; 
a pip install is recommended.  

For XGBoost the following is required: 

conda install -c anaconda py-xgboost 

and  

conda install -c anaconda seaborn  

Figure 11: XGBoost packages 

The environment and kernels are now ready for use. The Jupyter Notebook is now available 
for the desired kernel. 

 
Figure 12: Jupyter Notebook 

The methods can now be run. The high-level flow charts of the methods are provided in 
Section 10. 

5.2. XGBoost Notebook Development 

The structure of the developed notebooks follows the same pattern: importing packages, 
input data, actions, outputs. The process of note book construction is presented in section 
10: Appendix B. 

5.2.1. Hyperparameter Optimisation 

Before running the prediction model, the hyperparameter optimisation is run. The 
hyperparameter optimisation notebook follows the same pattern as above. The packages 
required at this stage are shown in Figure 13.  

 
Figure 13: Hyperparameter optimisation import 

The notebook then needs to pointed to an input file (csv) containing the data for tuning and 
validating the model, Figure 14. The filepath should be updated to the location of that file. 
The split data here refers to where the training set ends and the validation set begins. The 
features are then listed. If additional data is to be used in the tuning of the model, for 
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example solar irradiance, it should be added to the input file, and then the feature added to 
this below. The feature name should match the column heading in the input file. The 
parameter that the forecasting and hyperparameter optimisation is being run for also need 
to be specified. This is done in the bottom two lines in Figure 14; in this example, the 
parameter is “Load”.  

 
Figure 14: Hyperparameter optimisation input and features 

The objective function and search space need to be defined. These are shown in Figure 15 
and described in Section Error! Reference source not found.. Then follows the trials method 
nd optimisation algorithm, Figure 16.  

These then output an optimal set of hyperparameters for use in XGBoost. This part of the 
process is manual and these values are to be copied into the XGBoost notebook. Figure 17 
shows an example of the hyperparameters that can be generated.  
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Figure 15: Objective Function and Search Space 

 
Figure 16: Trials Method and Optimisation Algorithm 

 
Figure 17: Example hyperparameter output 

5.2.2. XGBoost Notebook 

As with the hyperparameter optimisation, the XGBoost notebook begins with importing the 
necessary packages, Figure 18, and importing the input data, Figure 19.  
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Figure 18: XGBoost package import 

 
Figure 19: XGBoost input filepath 

The date at which input data is split needs to be specified. This is by the Split Date which 
determines when the training data is separated from the test data. The End Date then 
specifies when the prediction ends. In this example, the prediction is for one day, 1st July 
2015, Figure 20. 

 
Figure 20: Splitting the input data into training and test sets 

As with the hyperparameter optimisation notebook, the features applied in the forecast 
need to be defined, Figure 21. These should match the column headings in the input file. In 
this example bank holiday in England and Wales are included, and one hot encoding on the 
day of the week.  

 
Figure 21: Feature definition 
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XGBoost is then trained. The parameter the forecast is for is specified here, Figure 22. The 
training function is then updated with the optimal parameters from the hyperparameter 
optimisation, Figure 23. 

 
Figure 22: Setting up training 

 
Figure 23: Training function 

The prediction can then be run.  

 
Figure 24: Prediction function 

There are then a number of options for what can be outputted. The prediction overlaid on 
the entire dataset is an option (Figure 25), as well as the prediction and actual data for the 
specified time horizon (Figure 26).  

 
Figure 25: MW Prediction overlaid on dataset 
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Figure 26: MW Prediction and actual values for specified time horizon 

The Mean Squared Error, Mean Absolute Error, Root Mean Squared Error, and Mean 
Absolute Percentage Error can either be calculated within the notebook, or the calculations 
can be applied manually to the predicted data. The syntax for including these calculations in 
the notebook is shown below, Figure 27.  

 

 

 

 

Figure 27: Error calculations 

5.2.3. Influence of Features 

Features and their importance have already been introduced in Section 3.3, and here results 
from initial Use Case testing are provided to show the importance of different features. The 
results shown are for UC2, Cardiff South BSP for a one month ahead prediction. The Use 
Case is set up as defined for Forecast Period 1 in Section 4 and three sets of features are run. 
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Each builds on the last by adding new features to the list, rather than by replacing previously 
tested features.  

 Baseline: hour, day of week, quarter, month, year, day of year, day of month, week 
of year; 

 Round 2: temperature, one hot encoding (Section 3.3) and holidays; 

 Round 3: wind and solar output collected from weather sources and wind and solar 
physical models16. 

The importance of the features on the prediction for these three rounds of testing are 
shown in Figure 28. With the basic feature set in the Baseline test, the day of year is most 
important, followed by the hour. With the introduction of temperature, holidays and one 
hot encoding in Round 2, the day of the year and the hour remain the most important 
features, followed by temperature. With the introduction of wind and solar output in Round 
3, the importance of the features changes, with temperature becoming the most important 
feature in the prediction. This change in importance reflects the methods ability to detect 
trends in the input data and predict based on those trends.   

   

Figure 28: Left – baseline, Centre – Round 2, Right – Round 3 

The prediction itself becomes much more in line with the actual values for the test period, 
Figure 29.  

  

                                                      
 
16

 https://www.renewables.ninja/ 

https://www.renewables.ninja/
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Figure 29: Actual MW versus Predicted MW. Top – Baseline, Middle – Round 2, Bottom – Round 3 

Finally, there is an impact on the metrics. The Root Mean Squared Error (RMSE) values for 
each of the three tests are shown in Table 1. The RMSE is the standard deviation of the 
prediction errors. The equation used is: 

𝑅𝑀𝑆𝐸 = √(𝑓 − 𝑜)2 

Where f represents the forecasted value and o represents the actual value.  

Table 1: Feature impact on RMSE 

Test RMSE MAPE 
(%) 

Baseline 0.902 7.152 

Round 2 0.569 3.517 

Round 3 0.647 4.466 

The impact on the RMSE by introducing temperature, one hot encoding and holidays shows 
a reduction of 37%. Interestingly, by providing more information in Round 3 the RMSE has 
increased by 14%. This shows that while introducing more data can be beneficial and 
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improve accuracy, it can also have a detrimental effect. In this instance, it could be that 
there is limited wind and solar generator connected behind the BSP meaning that trends 
found are not relevant for the prediction in the load. The temperature remains an important 
feature, however, as changes in temperature impact on load. 

5.2.4. Influence of Training Dataset Length 

The length of the training set can also impact the accuracy of the prediction. The Use Cases 
were designed with two forecasting sets, one with a longer training period, and one with a 
shorter training period. The point of which was to determine the impact the differing 
datasets had on a prediction for the same Use Case. Considering UC2, as in the previous 
section, the forecasts are defined in the Use Case description in Section 4. Forecast 1 uses 12 
months of historical data in the training set, whereas Forecast 2 uses six months of historical 
data. The ranking of features does not change significantly for the different training sets, 
Figure 30. 

 

 

Figure 30: Feature Importance. Left – Forecast 1, Right – Forecast 2 

The prediction improved with the shorter training set in Forecast 2, Figure 31. This is echoed 
in the RMSE values for the two forecasts, Table 2, where a reduction of 35% is seen in the 
RMSE for Forecast 2.  

Table 2: Training set length impact on RMSE (Month ahead forecast) 

 

 

 

 

 

 

Test Training set 
length 

RMSE 

Forecast 1 12 months 0.902 

Forecast 2 6 months 0.581 
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Figure 31: Forecast MW versus actual MW data. Top – Forecast 1. Bottom – Forecast 2. 

While the conclusion can be drawn that the prediction may be better for shorter time 
horizons when using a shorter training set, the same cannot be said for longer time horizons. 
If we consider one of the transformers for Use Case 1 (discussion on analysing GSP 
transformers individually can be found in Section 7.11 and Section 8.4) the RMSE decreases 
when using the shorter training set. Given that UC1 initially investigates six months ahead, 
having more data available to facilitate that prediction helps to improve the accuracy. The 
RMSE is shown in Table 3, and the forecast versus the actual data is shown in Figure 32.  

Table 3: UC1 – Impact of Training set length on RMSE (month ahead forecast) 

Test Training set length RMSE 

Forecast 1 12 months 12.50 

Forecast 2 6 months 13.23 
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Figure 32: UC1 – Forecast MW versus actual MW data. Top – Forecast 1. Bottom – Forecast 2. 

5.3. LSTM Notebook Development 

5.3.1. Hyperparameter Optimisation 

As with the XGBoost hyperparameter optimisation, it is first necessary to import the 
packages required, Figure 33. 

 
Figure 33: Hyperparameter optimisation package imports 

It is then necessary to import the data for tuning, Figure 34. This should be in csv format. A 
full file path is not required, however, the name of the file is, and it should be stored in the 
same location as the notebook file. The parameter that the tuning is for should be specified, 
in this example, it is for “Load”, and this should match one of the columns in the input file. 
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The dates for which the split between the tuning dataset and the validation data set are also 
specified here.  

 
Figure 34: Data import 

The hyperparameter optimisation function is then developed, shown in Figure 35. The 
Hyperopt function, implemented in Hyperas, allows for a Bayesian inference approach to 
finding the optimal features for the LSTM model. The choices presented are from experience 
and are by no means exhaustive, therefore expanding these selections could yield better 
metrics. In this case, metrics refer to the improvement of mean squared error. 
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Figure 35: Hyperparameter optimisation function focusing on improvement of mean squared error 

The main method is then developed, shown in Figure 36. This runs through the 
hyperparameter optimisation process to produce an output JSON file with the optimal LSTM 
hyperparameters. These are then used in the LSTM model notebook.  



 

 
 

49 
 

FORECASTING EVALUATION REPORT 
 

 
Figure 36: Hyperparameter optimisation main method function 

The output is as shown in Figure 37. This should be interpreted as: 

 Dense: This refers to the options for the Dense variable in Figure 35. The available 
options are 10, 20, 30, 100. The output of 2 means that 20 is the optimal choice for 
this variable.  

 LSTM: This refers to the options for the LSTM variable in Figure 35. The available 
options are 10, 20, 50, 100. The output of 1 means that 10 is the optimal choice for 
this variable.  

 Choiceval: This refers to the options for the Choiceval variable in Figure 35. The 
options are “adam”, “sgd”, and “rmsprop”. These are different optimisation 
algorithms. The output of 1 means that “adam” is the optimal choice for this variable.  

 lr, lr_1, and lr_2 refer to options for the three choiceval options. By choosing “adam” 
for choiceval, the lr value applies. The third option for this is 10 ** -4. If the “sgd” 
option had been chosen then the lr_2 value applies.  

These variables refer to the LSTM architecture that is described in Section Error! Reference 
ource not found.. 

 
Figure 37: Optimal hyperparameter output 

5.3.2. LSTM Notebook 

As with the hyperparameter optimisation notebook, the LSTM notebook starts with the 
necessary package imports, Figure 38. The input data is then specified, Figure 39.  
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Figure 38: LSTM package import 

 
Figure 39: LSTM input data 

The training and test sets are then split by dates, and the predictors are defined, Figure 40. 
In this case, if the prediction is for the week ahead, then the previous seven days are 
identified as predictors. If the prediction was for a month ahead then the previous 31 days 
would be used as predictors.  

The whole data train, the training dataset, and the test data set are then normalised. Figure 
41 - Figure 43. The data is normalised to reduce the range that relationships are identified in. 
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Figure 40: Splitting the dataset into training and test sets 

 
Figure 41: Normalising the data train 

 
Figure 42: Normalising test data 

 
Figure 43: Normalising predictor data 

The LSTM model is then developed, shown in Figure 44. Here the neurons variable relates to 
the LSTM value in the hyperparameter optimisation output and should be updated to match. 
The same for the Dense variable. This should match the Dense value in the hyperparameter 
optimisation. The optimisation algorithm should also be updated depending on the 
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hyperparameter optimisation output, with the appropriate “lr” value. These dictate how the 
model will train.   

 
Figure 44: Creating LSTM model 

The forecast can then be developed, and an output can be generated either looking at the 
whole dataset, or just the time horizon for which the prediction is required, Figure 45 and 
Figure 46.  
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Figure 45: Prediction function with Forecast versus Actual output 
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Figure 46: Output for specified time horizon 

Finally, the error calculations are performed, Figure 47.  

 

 
Figure 47: Error calculation 

5.3.3. Influence of Features 

The results shown are for UC2, Cardiff South BSP for a one month ahead prediction. The Use 
Case is set up as defined for Forecast Period 1 in Section 4 and three sets of features are run. 
Each builds on the last by adding new features to the list, rather than by replacing previously 
tested features.  

 Baseline: hour, day of week, quarter, month, year, day of year, day of month, week 
of year; 
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 Round 2: temperature, one hot encoding (Section 3.3) and holidays; 

 Round 3: wind and solar output collected from weather sources and wind and solar 
physical models16. 

The predictions improve with the introduction of more data as shown in the graphs in Figure 
48. The improvement can also be seen in the RMSE for each round of testing in Table 4.  

 
Figure 48: Actual versus Predicted. Top – Baseline, Middle – Round 2, Bottom – Round 3 

Table 4: Feature impact on RMSE 

Test RMSE 

Baseline 2.833 

Round 2 2.644 

Round 3 2.030 

The impact on the RMSE by introducing temperature, one hot encoding and holidays shows 
a reduction of 7%. The introduction of further features shows another reduction of 23% in 
the RMSE. This shows that LSTM is able to identify trends in the additional data and improve 
on the errors calculated in the baseline testing. Where it has failed to identify trends, as the 
weekend days shows, more features specific to weekend rather than weekday could be used 
to enable this pattern to be understood by the LSTM’s hidden layer.  

5.3.4. Influence of Training Dataset Length 

Considering UC2, as in the previous section, the forecasts are defined in the Use Case 
description in Section 4. Forecast 1 uses 12 months of historical data in the training set, 
whereas Forecast 2 uses six months of historical data. The prediction improves with the 
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shorter training set in Forecast 2, Figure 49. This is echoed in the RMSE values for the two 
forecasts, Table 5, where a reduction of 17% is seen in the RMSE for Forecast 2. 

Table 5: Training set length impact on RMSE 

Test Training set 
length 

RMSE 

Forecast 1 12 months 2.833 

Forecast 2 6 months 2.342 

 

 

Figure 49: Forecast versus actual data. Top – Forecast 1. Bottom – Forecast 2.  
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6. Database  

This section captures the database schema used for the historical data repository in the EFFS 
forecasting methods evaluation toolchain. The requirements for the database include that it 
can: 

 Be replicated by third parties, in this case, AMT Sybex/Capita. This requires a shared 
schema and SQL scripts for creating the database.   

 Be used as part of the EFFS forecasting evaluation toolchain, including scripts, in the 
form of Jupyter notebooks or Python scripts which populate the database from the 
raw input data.   

6.1. Data Sources 

Data sources used during the initial design stage include: 

 WPD Load and Generation data for individual customers; 

 GSP, BSP, and Primary substation power flows; 

 Weather data. 

6.2. Technologies 

SGS has selected the following technologies for the EFFS forecasting methods evaluation 
toolchain: 

 PostgreSQL. PostgreSQL is a mature open source database with commercial support. 
https://www.postgresql.org/  

 The TimescaleDB extensions to PostgreSQL. The TimescaleDB extensions to 
PostgreSQL overcomes some of the traditional issues with storing large amounts of 
time-series data within a classical relational database. https://www.timescale.com/  

 PG Admin. The standard database admin tool that comes with PostgreSQL. All scripts 
for creation of the EFFS forecasting methods toolchain databases are presented  

6.3. Installation 

To install the database on a MS Windows machine, simply following the instructions on the 
TimescaleDB website: https://docs.timescale.com/v1.2/getting-started 

6.3.1. The first instruction deals with Installing. 

The version that should be installed is version 10:  

https://docs.timescale.com/v1.2/getting-started/installation/windows/installation-windows 

Once this version is selected the site will provide details on how to install Timescale for 
Windows and to check that it has been installed correctly.  

Prerequisites include: 

 The installation of PostgreSQL. SGS is currently using the latest version 10 build for 
Windows.  

https://www.postgresql.org/
https://www.timescale.com/
https://docs.timescale.com/v1.2/getting-started
https://docs.timescale.com/v1.2/getting-started/installation/windows/installation-windows
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6.3.2. The next instruction deals with Setting up TimescaleDB. 

https://docs.timescale.com/v1.2/getting-started/setup 

Follow the instructions on this page, creating a database with an appropriate name when 
the following instruction is given: 

 

An error will occur if this is entered verbatim. The following must be used: 

CREATE EXTENSION IF NOT EXISTS timescaledb WITH VERSION '1.2.1' CASCADE; 

This should start timescale DB correctly and the screen shown in Figure 50 should be 
displayed: 

 
Figure 50: TimescaleDB start screen 

6.4. Database Schema 

The database schema is presented using entity relationship diagrams, shown in Figure 51, 
Figure 52, and Figure 53. These diagrams capture the relationships between data and it has 
been used to derive the database schema. The schema itself is provided as an SQL script, 
which, when run in PG Admin, will create an instance of the EFFS database.   

The database schema is based on a layered data architecture. Standard data architectures 
transform data from foundation layers though to a presentation layer. In the case of the 
work for EFFS, the following three layers are defined: 

 The foundation layer (Figure 51): This layer contains the raw time-series data; 
configuration data from loggers; locational data; and classification of load groupings 
per relevant substation;  

 The staging layer (Figure 52): This layer contains cleansed datasets, and training and 
test sets; and 

 The results/presentation layer (Figure 53): This layer contains forecast results linked 
back to training and test sets.  

https://docs.timescale.com/v1.2/getting-started/setup
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TimescaleDB uses a special hypertable representation for time series data. It also support a 
series of special time series functions for the aggregation, up and down sampling of time 
series data. 
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Figure 51: Foundation layer 
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Figure 52: Staging layer 
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Figure 53:  Output layer 
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6.5. Instruction for database creation: 

Open PG Admin, the version used in this example is pgAdmin3 LTS by BigSQL, it is the 
default window 7 install. Other versions can be used, but the instructions may slightly vary: 

1. Configure the local host, a timescaleDB database would have been created in Section 
6.3 and shown in Figure 54. If a local host does not exist, one may need to be created 
- upon creation refresh the application and it should find any local PostgreSQL 
database; 

2. Right click on the database, a series of options are presented. Select create script, as 
shown in Figure 55; 

3. Copy and paste the script attached, into the new script and save with an appropriate 
name, click the green play button to run, as shown in Figure 56; 

4. The database with the aforementioned schema has been updated and is shown in 
Figure 57. 

The database is now ready to be populated with data and used as part of the forecasting for 
input data method.  

 
Figure 54: Configure localhost 
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Figure 55: Create script 
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Figure 56: Update and save database creation script 
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Figure 57: EFFS Database 

6.6. Python SQL Interface 

The database will interact with the forecasting methods by way of a python/SQL IO. It was 
explained in the toolchain. When data is to be extracted from the database the following 
instruction set.  

6.6.1.  Python SQL Input Instructions 

 
Figure 58: Python SQL Extract From Database 
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Figure 59: Python SQL Insert to Database 

The I/O can now be used to pull information into the forecast methods and save data from 
the forecasts into the database.  

6.7. Populating the Database 

The structure of the database will be used to populate the database correctly, where 
primary keys will be used as foreign keys in the foundation layer schema to establish the 
correct links. Therefore, metadata is required to be populated first, as this will be used as 
database signposting to enable efficient extraction of data. 

The ordering of this establishment is important, measurement data must be linked to an 
existing asset, therefore location data of all substation/transformers are established first, be 
it GSP, BSP, Primary, Load or Generator transformers.  

Then for each substation/transformers their type is established and finally the associated 
information, measurements can be established.  

After which, the raw time series data can be updated post metadata set up. Each table will 
be discussed with examples of how the shown in the database schema operate, and how 
metadata is established.  

6.7.1. Location Data  

The first table in the foundation layer to be populated is the Location table, presented in 
Table 6, with Prince Rock as an example: 

Table 6: Location Table 

  Lo
catio

n
_id

 

are
a 

gsp
_n

am
e

 

b
sp

_n
am

e
 

p
rim

ary_n
am

e
 

d
e

scrip
tio

n
 

lo
n

gtitu
d

e
 

latitu
d

e
  

1 1 South West Abham GSP Plymouth BSP Prince Rock Prince Rock 50 -4 
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The parameters are as follows: 

Location_id: This is the primary key, each unique location record will be assigned one of 
these. 

Area: The licence area assets will be associated with and the geospatial location. For WPD 
these areas are: 

 South West; 

 South Wales; 

 West Midlands; 

 East Midlands. 

gsp_name: This assigns the associated GSP name to the data. 

bsp_name: This assigns the associate BSP name to the data, if there is not one, for example, 
a GSP entry, this will be left null.  

primary_name: This assigns the associate primary name to the data, if there isn’t one, for 
example, a BSP entry, this will be left null.  

Description: This is the unique name identified for the entry, for GSP, BSP, and Primaries a 
good convention is to maintain these IDs. Where things may differ is for generators or  load 
customers.  

Longitude/Latitude: This is the data point’s geographic reference represented in longitude 
and latitude by decimal degrees. It is suggested that all points are converted to this 
referencing before entry to ensure standardisation. However, if an alternative referencing 
was desired it could be achieved by updating these database entries.  

6.7.2. Substation Data 

The second table in the foundation layer to be populated is the substation data table 
presented in Table 7, using Prince Rock as an example.  

Table 7: Substation Data 

  substation_id location_id description type 

1 1 1 Prince_Rock 3 

 

The parameters are as follows: 

Substation _id: This is the primary key, each unique substation record will be assigned one 
of these. 

Location_id: This is the foreign key, each substation that relates to the same location will be 
assigned the foreign key respective of this location and the description assigned. This allows 
for substations to be sorted by location. 

Description: This is the unique name identified for this entry, although not entirely required 
as it can be inferred from the foreign key, it is used for reference to make sure of the correct 
assignment.  

Type: This defines what type of substation it is. There are 5 types: 

 GSP (1) 

 BSP (2) 

 Primary (3) 

 Generator (4) 
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 Load (5) 

6.7.3.  Metered Flow 

The third table is the metered flow table, the metered flow data establishes the metered 
flows at the substation, typically electrical parameters, however, this is extended to include 
weather data measurements for the site also.  An example is shown in Table 8.  

Table 8: Metered Flow Tables 

  profile_id substation type channel 

1 1 1 3 PRINCE ROCKCB 27/19Power MW 

2 2 1 3 PRINCE ROCKCB 27/19Power MVAr 

3 3 1 3 MOUNT BATTEN Weather Station 

 

The parameters are as follows:  

Profile_id: This is the primary key and unique Identifier to the meter flow. 

Substation_id: This is the foreign key identifying the metered flows with the substation it is 
associated with since there can be multiple measurements at a substation.  

Type: This is the type of substation associated with the metered flow. 

Channel: This is the defined channel that records the metered flow, this can be drawn from 
Data Logger, Met Office or any channel providing information for the metered flow.  

6.7.4. Load Customers 

The fourth table is for the Load Customers. These are typically large customers whose 
imports have a significant effect on network operations, due to being directly connected. 
Their data structure is presented in Table 9, using Bombardier 33 kV as an example. 

Table 9: Load Customer Table 

  load
_id 

substat
ion 

locati
on 

substation_
type 

channel  licence_a
rea 

customer_name 

1 1 2 2 Primary Customer Metering CB 
No1 MVA 

East 
Midlands 

Bombardier 33kV 
MW/MVAR/MVA 

The parameters are as follows: 

Load_id: The primary key uniquely identifying the site. 

Substation_id: The foreign key assigning the customer to a substation.  

Location_id: The foreign key assigning the customer to a location (this can vary from the 
substation and can, therefore, require a separate location reference). 

Channel: The channel which measurement data is associated. 

License Area: As titled.  

Customer Name: As titled. 

6.7.5. Generator Customers  

The fifth table is for the Generator Customers. These are typically large customers whose 
exports have a significant effect on network operations, due to being directly connected. 
Their data structure is presented in, Table 10, using ALLER COURT 33kV SOLAR FARM as an 
example. 
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Table 10: Generator Customer Table 

  generator_id substation location  gen_type installed_cap 

1 1 3 3 ALLER COURT 33kV SOLAR FARM 20 

Load_id: The primary key uniquely identifying the site. 

Substation_id: The foreign key assigning the customer to a substation. 

Location_id: The foreign key assigning the customer to a location (this can vary from the 
substation and can, therefore, require a separate location reference). 

Channel: The channel which measurement data is associated. 

License Area: As titled.  

Customer Name: As titled. 

6.7.6. LCT By Primary 

The sixth table is Load Customers By Primary. This holds data on the primaries for the 
number of customers associated with each primary. This was created to highlight how 
external information can be linked to the core forecasting objects. This was not populated 
during the project.   

6.7.7. Effs_Types 

The seventh table is the EFFS Types table, which determines the types of data that the EFFS 
forecasting methods will forecast for, however, as part of the forecasts, supplementary 
parameters are considered as a type. The full list is, for each GSP, BSP, Primary, Generator 
and Load customers: 

 Uses and Forecasts 
o MW  
o MVAR 

 Only uses: 
o Voltage 
o Amps 
o Temp 
o Solar Irradiance 
o Wind Speed 
o Wind Direction 

An example from Prince Rock is shown in Table 11. 

Table 11: Effs_Types Data 

  ValueType MeteredFlow Unit Description Generation  Load 

1 1 1 MW PRINCE ROCKCB 27/19Power MW     

 

6.7.8. Historical Profiles 

The eighth table, Table 12, assigns metadata associated with the measurement data. Given 
an overall summary of what it contains and signposting it to the relevant external tables.  

Table 12: Historical Profiles Table 

 Profile
_ID 

ValueT
ype 

Name Description StartDateTi
me 

EndDataTim
e 



 

 
 

71 
 

FORECASTING EVALUATION REPORT 
 

1
  

1 1 PRINCE ROCKCB 
27/19Power MW 

PRINCE ROCKCB 
27/19Power MW 

01/01/2014 
00:00 

15/02/2018 
23:30 

The parameters are as follows: 

Profile_ID: The unique primary key for the historical profile entry. 

ValueType: The foreign key to relate the data to other tables. 

Description: Related to its measurement.  

Start Time/End Time: The encompassing data period.  

6.7.9. Raw Input Data 

The ninth and final table is slightly different from the metadata tables and explained in 
Section 6.9. 

6.8. Populating Metadata for Location and Substation Data 

The metadata for the locations and substation tables can be found in various documents 
provided by WPD. All of which contain varying structures. In order to populate database 
automation scripts that interact with these external sources will need to be developed. An 
example in Figure 60 shows one way this can be achieved.  

Data From Data Loggers

Data From Distribution 
Substation DataBase

Data From Other WPD 
Data Sources

Data From Third Party 
Souces

Automated Sort 
Function SQL Query Database

Location_id Creates_location_ID as Primary Key 

Long 50.3675

Latitude -4.1134

Area South_West

gsp_name Abham  S.G.P.

bsp_name Plymouth Bsp

primary_name Prince Rock

Description Prince Rock Location _Table

With temp_loc_ID as (INSERT into locations (area,description) VALUES('South West','Prince_Rock') returning *)

INSERT into substations (location_id, description,type) VALUES ((select location_id from temp_loc_ID), ' Prince Rock',3)

substaion_id Creates_substation_ID as Primary Key 

Location_id Inserts Location_ID FROM Location Table  as Foreign Key

description Inserts Description FROM Location Table 

type 3

code N/Asubstations_table

Dataframe Created

SQL Query Accessing 
Dataframe

Meta Data From Sources

Figure 60: Populating Metadata Database proposed Scheme 

After the initial data population, the SQL database can be updated routinely. This structure 
uses an implicit example where the network is structured as per the condition the data was 
provided. However, if primaries are switched to new B.S.Ps, or exist in a meshed state 
between two primaries, the substation table can be updated to consider a switch or 
appended to associate multiple foreign key entries.  Therefore allowing the record to be 
extracted for the specific search query applied. 

6.9. Updating Substations for time-series data 

Once the metadata is assigned, the time series data can be input, this can be done by using 
the metadata signposts to update the foreign key assignments accordingly as part of a 
python SQL input/output (I/O) loop.  
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Where the SQL instruction has the form shown in Figure 61: 

 
Figure 61: SQL Update Query 

Once the correct key is extracted new data can be looped into the raw_data_table as shown 
in Table 13. 

Table 13: Raw Input Profile Table 

Profile_ID TimeStamp Double Value 

1 01/01/2014 00:00 6.58 

1 01/01/2014 00:30 6.43 

1 01/01/2014 01:00 6.32 

6.10. Forecast and Cleansed Data 

The forecast and cleansed layers are where the output results for external forecast methods 
(presented in this document) and external cleansing methods (not presented) can be 
placed. They have the same structure as the raw input data and should be looped into the 
foundation layer referencing in the exact same way. The allows the DNO to keep raw, 
forecasted and cleansed data separate so when configuring the forecasting and cleansing 
methods they can be assured on what the data source origins are.  

6.11. Database Summary  

The database section has shown how the SQL database is created using PostGresSQL with 
PGAdmin, alongside time series DB. The SQL script that creates the database schema and 
the database schema itself has also been defined.  

How the tables can be populated with the metadata and updated with the subsequent time-
series data has also been presented. 

Once the database is populated Python I/O can be used to extract the data and input it into 
the forecast model, the I/O can then be used to update the forecast tables.  

The main challenge surrounding the database is the automation of the population tasks. A 
process has been presented here with all the required SQL queries and I/O to make it work. 
However, the metadata and time series data will be in many uncommon structures and will 
have to be cleaned up using an automated sort process. This is outside the scope of this 
project, but an important task to consider whilst populating the database.  
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7. Results of Testing 

7.1. Scenarios and Inputs 

The testing scenarios and input data outlined in Table 14 build upon the Use Cases defined 
in Section 4. Each of the seven Use Cases are testing for all the time horizons (with the 
exception of UC7: Large Load Customer where the available input data of one calendar year 
does not allow for six months ahead forecasting). The forecasting method applied, XGBoost 
is tuned once for each Use Case. The method then automatically retrains itself for each 
forecast run, adjusting the amount of data used for each time horizon and period studied.  

For each time horizon associated to the use case, the following is predicted: 

 Six Months Ahead: 
o Six months for each quarter from the end of the validation period in the 

tuning dataset. There are six separate six month ahead predictions.  

 Month Ahead: 
o One month for the calendar year following the end of the validation period in 

the tuning set. There are 12 separate month ahead predictions.  

 Week Ahead: 
o The first week of every calendar month following the end of the validation 

period in the tuning set. There are 12 separate week ahead predictions. 

 Day Ahead: 
o Every day in the first week of every calendar month following the end of the 

validation period in the tuning set. There is 84 separate day ahead 
predictions. 

 Hour Ahead: 
o Every hour in the first week of each quarter following the end of the 

validation period in the tuning set. There are 672 separate hour ahead 
predictions.  

In order to accommodate the testing outlined, the basic feature set, described in Table 14, is 
applied. This is done in order to achieve an efficient computation time for all testing. 
Weather data is however applied to the Generator forecasting as this is more relevant than 
other features.  

Table 14: Scenarios and input data for testing 

Location 
Time 

Horizons 
Features 

Tuning, Validation, 
Forecasting Dates 

Data Inputs & Sources 

Indian 
Queens GSP 
 
4x 240 MVA 
Transformers 
 
Forecasts are 
produced for 
each 
transformer, 
and an 

Six Month 
Ahead 
Month 
Ahead 
Week 
Ahead 
Day Ahead 
Hour Ahead 

Hour 
Day of Week 
Quarter 
Month 
Year 
Day of Year 
Day of Month 
Week of Year 
Holidays 

Tuning: 
14-12-2014 – 13-
11-2015 
Validation: 
14-11-2015 – 14-
12-2015 
Forecasting: 
01-01-2016 – 30-
09-2017 

Indian Queens SGP 180 – MW 
Indian Queens SGP 380 – MW 
Indian Queens SGP 480 – MW 
Indian Queens SGP 280 – MW 
Indian Queens SGP 180 – MVAR 
Indian Queens SGP 380 – MVAR 
Indian Queens SGP 480 – MVAR 
Indian Queens SGP 280 – MVAR 
Bank holidays for England and Wales

17
 

                                                      
 
17

 http://www.calendarpedia.co.uk 

http://www.calendarpedia.co.uk/
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Location 
Time 

Horizons 
Features 

Tuning, Validation, 
Forecasting Dates 

Data Inputs & Sources 

aggregate 
produced by 
summing 
individual 
transformers. 

Cardiff South 
BSP 
 
2x 40 MVA 
Transformers 
 
Forecasts are 
produced for 
the aggregate 
BSP. 

Six Month 
Ahead 
Month 
Ahead 
Week 
Ahead 
Day Ahead 
Hour Ahead 

Hour 
Day of Week 
Quarter 
Month 
Year 
Day of Year 
Day of Month 
Week of Year 
Holidays 

Tuning: 
01-01-2015 – 30-
11-2015 
Validation: 
01-12-2015 – 31-
12-2015 
Forecasting: 
01-01-2016 – 30-
09-2017  

Cardiff SouthGRID 1Power MW 
Cardiff SouthGRID 2Power MW 
Cardiff SouthGRID 1Power MVAR 
Cardiff SouthGRID 2Power MVAr 
Bank holidays for England and Wales

17
 

Prince Rock 
Primary 
 
2x 17.25 MVA 
Transformers 
 
Forecasts are 
produced for 
the aggregate 
primary. 

Six Month 
Ahead 
Month 
Ahead 
Week 
Ahead 
Day Ahead 
Hour Ahead 

Hour 
Day of Week 
Quarter 
Month 
Year 
Day of Year 
Day of Month 
Week of Year 
Holidays 

Tuning: 
01-01-2015 – 30-
11-2015 
Validation: 
01-12-2015 – 31-
12-2015 
Forecasting: 
01-01-2016 – 30-
09-2017  

PRINCE ROCKCB 27/19Power MW 
PRINCE ROCKCB 27/21Power MW 
PRINCE ROCKCB 27/19Power MVAr 
PRINCE ROCKCB 27/21Power MVAr 
Bank holidays for England and Wales

17
 

Truro BSP 
 
2x 60 MVA 
Transformers 
 
Forecasts are 
produced for 
the aggregate 
BSP.  

Six Month 
Ahead 
Month 
Ahead 
Week 
Ahead 
Day Ahead 
Hour Ahead 

Hour 
Day of Week 
Quarter 
Month 
Year 
Day of Year 
Day of Month 
Week of Year 
Holidays 

Tuning: 
01-01-2015 – 30-
11-2015 
Validation: 
01-12-2015 – 31-
12-2015 
Forecasting: 
01-01-2016 – 30-
09-2017  

TRURO BSPCB 1T0Power MW 
TRURO BSPCB 2T0Power MW (inverted as 
measurement appears to be in the wrong 
direction) 
TRURO BSPCB 1T0Power MVAr 
TRURO BSPCB 2T0Power MVAr (inverted 
as measurement appears to be in the 
wrong direction) 
Bank holidays for England and Wales

17
 

Llynfi Valley 
Primary 
 
1x 12 MVA  
1x 21 MVA 
Transformers 
 
Forecasts are 
produced for 
the aggregate 
primary.  

Six Month 
Ahead 
Month 
Ahead 
Week 
Ahead 
Day Ahead 
Hour Ahead 

Hour 
Day of Week 
Quarter 
Month 
Year 
Day of Year 
Day of Month 
Week of Year 
Holidays 

Tuning: 
01-01-2015 – 30-
11-2015 
Validation: 
01-12-2015 – 31-
12-2015 
Forecasting: 
01-01-2016 – 30-
09-2017  

LlynfiTrans 1Power MW 
LlynfiTrans 2Power MW 
LlynfiTrans 1Power MVAr 
LlynfiTrans 2Power MVAr 
Bank holidays for England and Wales

17
 

Goonhilly 
Wind Farm, 
the Lizard, 
Cornwall 
 
12 MVA 
Capacity 

Six Month 
Ahead 
Month 
Ahead 
Week 
Ahead 
Day Ahead 
Hour Ahead 

Hour 
Quarter 
Month 
Year 
Day of Year 
Day of Month 
Week of Year 
Temperature 

Tuning: 
14-12-2014 – 13-
11-2015 
Validation: 
14-11-2015 – 14-
12-2015 
Forecasting: 
01-01-2016 – 30-

Goonhilly MW 
Goonhilly MVAr 
Temperature

18
 

Wind Output
18

 
Wind Speed

18
 

                                                      
 
18

 Renewables Ninja - https://www.renewables.ninja/ - for The Lizard, Cornwall.  

https://www.renewables.ninja/
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Location 
Time 

Horizons 
Features 

Tuning, Validation, 
Forecasting Dates 

Data Inputs & Sources 

Wind Output 
Wind Speed 

09-2017  

5MVA 
Capacity 

Six Month 
Ahead 
Month 
Ahead 
Week 
Ahead 
Day Ahead 
Hour Ahead 

Hour 
Quarter 
Month 
Year 
Day of Year 
Day of Month 
Week of Year 
Temperature 
Wind Output 
Wind Speed 

Tuning: 
14-12-2014 – 13-
11-2015 
Validation: 
14-11-2015 – 14-
12-2015 
Forecasting: 
01-01-2016 – 30-
09-2017  

Ashercourt_Farm MW 
Ashercourt_Farm MVAr 
Direct Sunlight

18
 

 

Large Load 
Customer 
 
Maximum 
Demand 
16 MVA 

Month 
Ahead 
Week 
Ahead 
Day Ahead 
Hour Ahead 

Hour 
Day of Week 
Quarter 
Month 
Year 
Day of Year 
Day of Month 
Week of Year 
Holidays 

Tuning: 
01-01-2017 – 31-
05-2017 
Validation: 
01-06-2017 – 30-
06-2017 
Forecasting: 
01-07-2017 – 31-
12-2017 

Load Customer MW
19

  
Load Customer MVAr 
Bank holidays for England and Wales

17
 

The results for each Use Case present the time taken for tuning and the minimum, average, 
and maximum times are taken for training and forecasting. The minimum, average, and 
maximum are given for the Root Mean Square Error (RMSE) and Mean Average Percentage 
Error(MAPE) which is a representation of performance accuracy. This is the standard 
deviation of the prediction errors. This is a measure of the size of the error that gives more 
weight to larger, or infrequent errors.  

The minimum, average, and maximum are given for the accuracy of the prediction. This is 
based on the following calculation specified by WPD:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) = 100 − (|
𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐴𝑐𝑡𝑢𝑎𝑙
| × 100) 

The forecast is considered to be successful if: 

 Forecasts are produced for all half hour timesteps in the prediction window; 

 Accuracy is greater than 80% for 80% of the time; and  

 Accuracy is greater than 50% for 80% of the time.  

In some cases, the actual value is very close to zero, which can be a credible value for a 
substation. Dividing by such a small value results in the large negative numbers in some of 
the results.  

Finally, the average over and underprediction, based on substation transformer capacity (or 
generation capacity or maximum demand as for UC6 and UC7) is given. This is to give an 
indication of the percentage exceedance of the transformer, and is calculated as: 

𝑂𝑣𝑒𝑟 𝑜𝑟 𝑢𝑛𝑑𝑒𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

=  
(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦% 𝑇𝑥 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦% 𝑇𝑥 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦)

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦%𝑇𝑥 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
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 Large Load 3 
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The following describes the results analysed to produce the tables shown in the following 
sections: 

 Six Month Ahead 
o The six predictions performed. 

 Month Ahead 
o The twelve predictions performed.  

 Week Ahead 
o The twelve predictions performed.  

 Day Ahead 
o The first day from each week prediction performed.  

 Hour Ahead 
o The first 24 hour predictions performed.  

The accuracy percentages show the average time greater than the specified accuracy 
calculated for each of the test cases for MW only. MVAr was also predicted, however, its 
Average Over/Under prediction was not presented as it is assumed MW accuracy it the key 
control for most procurement tasks. More comprehensive time-series, trend and histogram 
analysis of each result is presented in section 11: Appendix C.  

7.2. UC1: Indian Queens GSP 

7.2.1. Aggregated GSP (Sum of all Grid transformer loads) 

Table 15: Aggregated UC1 Results - MW 

MW 
 

Tuning 
Time (s) 

Training 
Time (s) 

Forecasting 
Time (s) 

RMSE 
Accuracy 

(%) 

Average 
Over 

Prediction 
(%) 

Average 
Under 

Prediction 
(%) 

Six Month Ahead 

Min 

5,166.7 

5.6 0.1 55.8 -447,159.9 

1,930.1 -1,461.7 Average 9.3 0.2 62.2 -266.4 

Max 14.0 0.2 72.0 100.0 

Month Ahead 

Min 

5,166.7 

3.0 0.0 44.0 -650,887.5 

420.8 -755.2 Average 4.6 0.1 56.5 -788.5 

Max 8.9 0.1 89.3 100.0 

Week Ahead 

Min 

5,166.7 

2.7 0.0 38.8 -46,533.6 

48.1 -98.8 Average 4.9 0.0 52.6 -135.2 

Max 8.9 0.1 75.6 99.9 

Day Ahead 

Min 

5,166.7 

2.4 0.0 13.5 -16,038.4 

26.0 -2.6 Average 6.2 0.0 45.1 -77.2 

Max 20.9 0.1 141.4 99.6 

Hour Ahead 

Min 

5,166.7 

0.7 0.0 0.1 -196.9 

0.3 -0.3 Average 2.7 0.0 16.3 19.2 

Max 20.6 0.2 112.3 96.8 
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Table 16: Aggregated UC1 Results - MVAr 

MVAr 
 

Tuning Time 
(s) 

Training Time 
(s) 

Forecasting Time 
(s) 

RMSE 

Six Month Ahead 

Min 

3,660.4 

7.7 0.1 46.6 

Average 9.6 0.1 51.3 

Max 13.5 0.2 56.8 

Month Ahead 

Min 

3,660.4 

4.6 0.0 38.0 

Average 6.9 0.1 49.1 

Max 11.3 0.1 62.4 

Week Ahead 

Min 

3,660.4 

4.7 0.0 32.2 

Average 7.2 0.0 46.6 

Max 13.2 0.1 67.3 

Day Ahead 

Min 

3,660.4 

3.6 0.0 5.8 

Average 8.6 0.0 36.7 

Max 30.3 0.1 87.6 

Hour Ahead 

Min 

3,660.4 

1.0 0.0 0.0 

Average 3.1 0.0 15.5 

Max 18.2 0.2 165.8 

 
Table 17: Aggregated UC1 – Accuracy Calculations 

 
Accuracy 

 
>50% >80% 

Six Months Ahead 30.61% 11.91% 

Month Ahead 28.89% 11.69% 

Week Ahead 25.07% 9.42% 

Day Ahead 30.95% 13.39% 

Hour Ahead 50.00% 25.00% 

 
The aggregated UC1, Table 17, shows that the GSP accuracy criteria are never met. This is 
due to the patterns embedded in the data being too stochastic in nature to extract. 
Therefore, disaggregation is required at each transformer in an attempt to separate the 
underlying behavioral patterns.   
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7.2.2. Transformer 1 

Table 18: UC1 Transformer 1 Results – MW 

MW 
 

Tuning 
Time (s) 

Training 
Time (s) 

Forecasting 
Time (s) 

RMSE 
Accuracy 

(%) 

Average 
Over 

Prediction 
(%) 

Average 
Under 

Prediction 
(%) 

Six Month 
Ahead 

Min 

1,187.2 

1.4 0.0 14.0 -28,733.3 

204.6 -153.6 Average 2.2 0.0 16.0 39.6 

Max 2.6 0.0 19.9 100.0 

Month 
Ahead 

Min 

1,187.2 

0.9 0.0 10.8 -25,876.9 

54.5 -46.4 Average 1.0 0.0 13.6 49.0 

Max 1.3 0.0 19.1 100.0 

Week 
Ahead 

Min 

1,187.2 

0.7 0.0 9.4 -9,883.0 

8.7 -21.2 Average 1.1 0.0 13.1 47.1 

Max 1.7 0.0 17.6 100.0 

Day Ahead 

Min 

1,187.2 

0.7 0.0 3.0 -486.5 

0.6 -1.1 Average 1.4 0.0 11.2 73.5 

Max 4.7 0.0 37.6 99.6 

Hour 
Ahead 

Min 

1,187.2 

0.2 0.0 0.0 76.7 

0.0 -0.1 Average 0.7 0.0 4.2 92.0 

Max 7.0 0.0 26.6 100.0 

Table 19: UC1 Transformer 1 – MVAr 

MVAr 
 

Tuning Time 
(s) 

Training Time 
(s) 

Forecasting Time 
(s) 

RMSE 

Six Month Ahead 

Min 

816.4 

2.0 0.0 20.2 

Average 2.5 0.0 21.5 

Max 3.2 0.0 23.2 

Month Ahead 

Min 

816.4 

1.2 0.0 15.9 

Average 1.5 0.0 20.5 

Max 2.3 0.0 26.2 

Week Ahead 

Min 

816.4 

1.4 0.0 14.8 

Average 1.8 0.0 19.5 

Max 2.8 0.0 26.7 

Day Ahead 

Min 

816.4 

1.0 0.0 1.2 

Average 2.2 0.0 14.9 

Max 7.2 0.0 27.1 

Hour Ahead 

Min 

816.4 

0.3 0.0 0.0 

Average 1.0 0.0 6.4 

Max 4.2 0.1 43.8 
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Table 20: UC1 Transformer 1 – Accuracy Calculations 

 
Accuracy 

 
>50% >80% 

Six Months Ahead 81.51% 49.77% 

Month Ahead 84.50% 56.88% 

Week Ahead 83.90% 56.60% 

Day Ahead 92.26% 61.90% 

Hour Ahead 100.00% 97.92% 

 
In Table 20 disaggregation has improved accuracy substantially, bringing it within an 
acceptable acceptance criteria. This conclusion is compounded by the next 3 disaggregated 
transformer results.  
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7.2.3. Transformer 2 

Table 21: UC1 Transformer 2 Results – MW 

MW 
 

Tuning 
Time (s) 

Training 
Time (s) 

Forecasting 
Time (s) 

RMSE 
Accuracy 

(%) 

Average 
Over 

Prediction 
(%) 

Average 
Under 

Prediction 
(%) 

Six Month 
Ahead 

Min 

1,854.0 

0.8 0.0 14.0 -1,123.2 

9.4 -0.6 Average 2.7 0.1 14.6 50.8 

Max 5.4 0.1 15.2 100.0 

Month 
Ahead 

Min 

1,854.0 

0.4 0.0 11.9 -836.0 

6.3 -0.5 Average 1.2 0.0 14.1 57.5 

Max 3.7 0.0 19.8 100.0 

Week 
Ahead 

Min 

1,854.0 

0.4 0.0 10.4 -742.1 

3.8 -0.5 Average 1.1 0.0 12.8 60.0 

Max 2.8 0.0 18.0 100.0 

Day Ahead 

Min 

1,854.0 

0.3 0.0 3.5 -97.4 

1.1 -0.3 Average 1.3 0.0 11.3 78.8 

Max 5.1 0.0 28.2 100.0 

Hour 
Ahead 

Min 

1,854.0 

0.1 0.0 0.0 70.9 

0.0 -0.1 Average 0.3 0.0 4.1 92.6 

Max 1.6 0.0 31.9 99.7 

Table 22: UC1 Transformer 2 Results - MVAr 

MVAr 
 

Tuning Time Training Time Forecasting Time RMSE 

Six Month Ahead 

Min 

1,396.9 

1.2 0.0 4.8 

Average 1.5 0.0 5.9 

Max 1.7 0.0 6.9 

Month Ahead 

Min 

1,396.9 

0.7 0.0 4.2 

Average 1.0 0.0 5.6 

Max 1.5 0.0 6.7 

Week Ahead 

Min 

1,396.9 

0.7 0.0 3.1 

Average 1.1 0.0 5.4 

Max 2.9 0.0 7.0 

Day Ahead 

Min 

1,396.9 

0.5 0.0 1.4 

Average 1.1 0.0 5.1 

Max 6.9 0.0 14.3 

Hour Ahead 

Min 

1,396.9 

0.1 0.0 0.0 

Average 0.3 0.0 2.4 

Max 2.5 0.0 44.8 
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Table 23: UC1 Transformer 2 – Accuracy Calculations 

 
Accuracy 

 
>50% >80% 

Six Months Ahead 77.36% 51.05% 

Month Ahead 80.86% 53.66% 

Week Ahead 80.63% 55.83% 

Day Ahead 92.26% 69.35% 

Hour Ahead 100.00% 87.50% 
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7.2.4. Transformer 3 

Table 24: UC1 Transformer 3 Results - MW 

MW 
 

Tuning 
Time (s) 

Training 
Time (s) 

Forecasting 
Time (s) 

RMSE 
Accuracy 

(%) 

Average 
Over 

Prediction 
(%) 

Average 
Under 

Prediction 
(%) 

Six Month 
Ahead 

Min 

1,044.9 

1.6 0.0 13.2 -189,504.5 

260.5 -355.8 Average 2.1 0.0 15.2 35.1 

Max 2.9 0.0 17.6 100.0 

Month 
Ahead 

Min 

1,044.9 

0.7 0.0 10.1 -83,725.5 

104.0 -30.8 Average 1.1 0.0 14.6 45.9 

Max 1.8 0.0 30.0 100.0 

Week 
Ahead 

Min 

1,044.9 

0.7 0.0 8.7 -56,549.0 

53.5 -13.6 Average 1.2 0.0 13.2 37.6 

Max 1.6 0.0 20.7 100.0 

Day Ahead 

Min 

1,044.9 

0.5 0.0 4.3 -54.0 

0.5 -0.3 Average 1.7 0.0 10.5 82.5 

Max 6.6 0.0 34.8 100.0 

Hour 
Ahead 

Min 

1,044.9 

0.2 0.0 0.0 74.5 

0.0 -0.1 Average 0.9 0.0 3.6 92.6 

Max 7.8 0.1 24.2 99.6 

Table 25: UC1 Transformer 3 Results - MVAr 

MVAr 
 

Tuning Time 
(s) 

Training Time 
(s) 

Forecasting Time 
(s) 

RMSE 

Six Month Ahead 

Min 

873.5 

3.7 0.0 11.5 

Average 4.4 0.0 12.8 

Max 5.5 0.0 14.5 

Month Ahead 

Min 

873.5 

2.4 0.0 9.8 

Average 3.7 0.0 12.4 

Max 6.0 0.0 16.1 

Week Ahead 

Min 

873.5 

2.1 0.0 6.9 

Average 3.3 0.0 11.5 

Max 5.2 0.0 18.5 

Day Ahead 

Min 

873.5 

1.9 0.0 1.5 

Average 4.4 0.0 8.9 

Max 9.7 0.0 28.4 

Hour Ahead 

Min 

873.5 

0.5 0.0 0.0 

Average 1.4 0.0 3.7 

Max 6.9 0.0 45.3 
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Table 26: UC1 Transformer 3 – Accuracy Calculations 

 
Accuracy 

 
>50% >80% 

Six Months Ahead 78.75% 51.90% 

Month Ahead 80.23% 55.52% 

Week Ahead 83.83% 55.52% 

Day Ahead 96.43% 69.35% 

Hour Ahead 100.00% 95.83% 
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7.2.5. Transformer 4 

Table 27: UC1 Transformer 4 Results – MW 

MW 
 

Tuning 
Time (s) 

Training 
Time (s) 

Forecasting 
Time (s) 

RMSE 
Accuracy 

(%) 

Average 
Over 

Prediction 
(%) 

Average 
Under 

Prediction 
(%) 

Six Month 
Ahead 

Min 

1,080.6 

1.7 0.0 14.6 -14827.7 

10.1 -49.7 Average 2.3 0.0 16.4 60.3 

Max 3.1 0.0 19.3 100.0 

Month 
Ahead 

Min 

1,080.6 

0.9 0.0 11.3 -13473.3 

5.7 -14.7 Average 1.3 0.0 14.2 65.8 

Max 2.1 0.0 20.5 100.0 

Week 
Ahead 

Min 

1,080.6 

0.9 0.0 10.4 -6017.0 

3.9 -7.5 Average 1.6 0.0 13.5 63.9 

Max 2.8 0.0 19.4 100.0 

Day Ahead 

Min 

1,080.6 

0.9 0.0 2.7 -25.4 

0.4 -0.2 Average 1.7 0.0 12.1 83.9 

Max 4.5 0.0 40.7 99.8 

Hour 
Ahead 

Min 

1,080.6 

0.2 0.0 0.0 -2.4 

0.0 -0.1 Average 0.8 0.0 4.5 88.5 

Max 4.1 0.0 29.6 99.8 

Table 28: UC1 Transformer 4 Results - MVAr 

MVAr 
 

Tuning Time Training Time Forecasting Time RMSE 

Six Month Ahead 

Min 

573.6 

0.7 0.0 10.1 

Average 1.3 0.0 11.1 

Max 3.1 0.0 12.2 

Month Ahead 

Min 

573.6 

0.4 0.0 8.0 

Average 0.8 0.0 10.7 

Max 1.4 0.0 13.4 

Week Ahead 

Min 

573.6 

0.5 0.0 7.5 

Average 1.0 0.0 10.2 

Max 2.2 0.0 15.0 

Day Ahead 

Min 

573.6 

0.3 0.0 1.7 

Average 0.9 0.0 7.8 

Max 6.6 0.0 17.8 

Hour Ahead 

Min 

573.6 

0.1 0.0 0.0 

Average 0.3 0.0 3.1 

Max 4.6 0.0 31.9 
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Table 29: UC1 Transformer 4 – Accuracy Calculations 

 
Accuracy 

 
>50% >80% 

Six Months Ahead 83.24% 52.10% 

Month Ahead 86.70% 60.04% 

Week Ahead 86.95% 59.04% 

Day Ahead 98.51% 71.13% 

Hour Ahead 95.83% 91.67% 
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7.3. UC2: Cardiff South BSP 

Table 30: UC2 Results – MW 

MW 
 

Tuning 
Time (s) 

Training 
Time (s) 

Forecasting 
Time (s) 

RMSE 
Accuracy 

(%) 

Average 
Over 

Prediction 
(%) 

Average 
Under 

Prediction 
(%) 

Six Month 
Ahead 

Min 

1,496.8 

3.1 0.0 1.6 -57.0 

0.6 -0.8 Average 5.9 0.1 2.1 88.4 

Max 12.1 0.1 2.5 100.0 

Month 
Ahead 

Min 

1,496.8 

1.5 0.0 0.5 36.5 

0.2 -0.3 Average 2.7 0.0 1.6 89.4 

Max 3.6 0.0 3.0 100.0 

Week 
Ahead 

Min 

1,496.8 

1.4 0.0 0.3 36.9 

0.1 -0.2 Average 2.5 0.0 1.1 91.9 

Max 3.6 0.0 2.2 100.0 

Day Ahead 

Min 

1,496.8 

1.3 0.0 0.2 77.1 

0.1 -0.1 Average 2.8 0.0 0.9 94.9 

Max 10.2 0.0 5.6 100.0 

Hour 
Ahead 

Min 

1,496.8 

0.4 0.0 0.0 91.1 

0.0 0.0 Average 1.0 0.0 0.3 97.5 

Max 4.9 0.1 8.2 100.0 

Table 31: UC2 Results - MVAr 

MVAr 
 

Tuning Time 
(s) 

Training Time 
(s) 

Forecasting Time 
(s) 

RMSE 

Six Month Ahead 

Min 

1,157.7 

3.6 0.0 0.5 

Average 5.6 0.1 1.0 

Max 7.6 0.1 2.1 

Month Ahead 

Min 

1,157.7 

2.4 0.0 0.4 

Average 3.6 0.0 0.5 

Max 4.2 0.0 0.7 

Week Ahead 

Min 

1,157.7 

1.7 0.0 0.3 

Average 3.9 0.0 0.5 

Max 6.7 0.0 0.8 

Day Ahead 

Min 

1,157.7 

1.6 0.0 0.1 

Average 3.1 0.0 0.4 

Max 4.8 0.0 1.5 

Hour Ahead 

Min 

1,157.7 

0.5 0.0 0.0 

Average 1.4 0.0 0.1 

Max 10.6 0.1 0.8 
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Table 32: UC2 – Accuracy Calculations 

 
Accuracy 

 
>50% >80% 

Six Months Ahead 99.42% 79.23% 

Month Ahead 99.94% 83.50% 

Week Ahead 99.78% 92.11% 

Day Ahead 100.00% 97.32% 

Hour Ahead 100.00% 100.00% 

 
The BSP predictions have performed well in the near term, fall short of six month ahead 
predictions for >80% of the time, albeit fractional.  
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7.4. UC3: Prince Rock Primary 

Table 33: UC3 Results – MW 

MW 
 

Tuning 
Time (s) 

Training 
Time (s) 

Forecasting 
Time (s) 

RMSE 
Accuracy 

(%) 

Average 
Over 

Prediction 
(%) 

Average 
Under 

Prediction 
(%) 

Six Month 
Ahead 

Min 

1481.2 

2.8 0.0 0.5 4.2 

0.4 -0.5 Average 3.4 0.0 0.8 93.0 

Max 3.9 0.1 1.7 100.0 

Month 
Ahead 

Min 

1481.2 

1.3 0.0 0.3 16.9 

0.3 -0.3 Average 1.6 0.0 0.5 94.8 

Max 2.2 0.0 1.4 100.0 

Week 
Ahead 

Min 

1481.2 

1.3 0.0 0.3 50.6 

0.2 -0.2 Average 1.9 0.0 0.4 95.5 

Max 3.0 0.0 0.7 100.0 

Day Ahead 

Min 

1481.2 

1.2 0.0 0.2 79.8 

0.1 -0.1 Average 2.0 0.0 0.4 96.7 

Max 6.4 0.0 2.6 100.0 

Hour 
Ahead 

Min 

1481.2 

0.3 0.0 0.0 84.0 

0.0 0.0 Average 0.8 0.0 0.2 97.3 

Max 4.0 0.0 5.2 100.0 

Table 34: UC3 Results - MVAr 

MVAr 
 

Tuning Time Training Time Forecasting Time RMSE 

Six Month Ahead 

Min 

1033.6 

1.2 0.0 0.3 

Average 1.6 0.0 0.3 

Max 2.5 0.0 0.5 

Month Ahead 

Min 

1033.6 

0.7 0.0 0.2 

Average 1.0 0.0 0.3 

Max 1.6 0.1 0.4 

Week Ahead 

Min 

1033.6 

0.6 0.0 0.2 

Average 0.9 0.0 0.2 

Max 1.6 0.0 0.3 

Day Ahead 

Min 

1033.6 

0.5 0.0 0.1 

Average 0.9 0.0 0.2 

Max 2.8 0.0 0.9 

Hour Ahead 

Min 

1033.6 

0.2 0.0 0.0 

Average 0.6 0.0 0.1 

Max 7.3 0.1 0.9 
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Table 35: UC3 – Accuracy Calculations 

 
Accuracy 

 
>50% >80% 

Six Months Ahead 98.23% 96.05% 

Month Ahead 99.98% 98.59% 

Week Ahead 100.00% 99.33% 

Day Ahead 100.00% 99.70% 

Hour Ahead 100.00% 100.00% 

 
Primary prediction provides the most consistent and accurate. This shows that there is 
deeply recognisable behaviour in the primary. Where this is exhibited in other primaries, it 
should give DSO confidence in these predictions.  
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7.5. UC4: Truro BSP 

Table 36: UC4 Results – MW 

MW 
 

Tuning 
Time (s) 

Training 
Time (s) 

Forecasting 
Time (s) 

RMSE 
Accuracy 

(%) 

Average 
Over 

Prediction 
(%) 

Average 
Under 

Prediction 
(%) 

Six Month 
Ahead 

Min 

1,263.1 

1.8 0.0 9.8 -68,461.0 

411.5 -308.5 Average 2.3 0.0 10.3 10.9 

Max 2.7 0.0 11.0 100.0 

Month 
Ahead 

Min 

1,263.1 

1.0 0.0 9.0 -66,584.7 

130.8 -47.8 Average 1.2 0.0 10.1 24.7 

Max 1.5 0.0 12.4 100.0 

Week 
Ahead 

Min 

1,263.1 

0.8 0.0 7.1 -13,177.5 

13.7 -26.7 Average 1.2 0.0 9.5 39.2 

Max 2.2 0.0 13.1 100.0 

Day Ahead 

Min 

1,263.1 

0.6 0.0 3.5 -5,321.0 

8.8 -1.4 Average 2.0 0.0 8.0 46.1 

Max 12.4 0.0 23.7 100.0 

Hour 
Ahead 

Min 

1,263.1 

1.8 0.0 9.8 -68,461.0 

-0.1 -0.2 Average 2.3 0.0 10.3 10.9 

Max 2.7 0.0 11.0 100.0 

Table 37: UC4 Results - MVAr 

MVAr 
 

Tuning Time 
(s) 

Training Time 
(s) 

Forecasting Time 
(s) 

RMSE 

Six Month Ahead 

Min 

1,773.2 

0.7 0.0 2.1 

Average 1.2 0.0 2.3 

Max 1.6 0.0 2.6 

Month Ahead 

Min 

1,773.2 

0.6 0.0 1.7 

Average 1.3 0.0 2.2 

Max 2.5 0.0 2.7 

Week Ahead 

Min 

1,773.2 

0.4 0.0 1.3 

Average 2.3 0.0 2.2 

Max 7.2 0.0 3.3 

Day Ahead 

Min 

1,773.2 

0.2 0.0 0.7 

Average 1.2 0.0 1.8 

Max 3.4 0.0 4.3 

Hour Ahead 

Min 

1,773.2 

0.0 0.0 0.0 

Average 0.3 0.0 1.1 

Max 4.1 0.1 6.8 
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Table 38: UC4 – Accuracy Calculations 

 
Accuracy 

 
>50% >80% 

Six Months Ahead 68.99% 29.88% 

Month Ahead 73.48% 33.75% 

Week Ahead 73.41% 34.10% 

Day Ahead 85.12% 45.54% 

Hour Ahead 100.00% 52.08% 

 
The Truro BSP does not perform as well as Cardiff BSP, this is due to the patterns becoming 
harder to extract, similar to the proposal of disaggregating for a GSP to each transformer, a 
similar technique could be applied here to improved the accuracy criteria to acceptable 
levels. 
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7.6. UC5: Llynfi Valley Primary 

Table 39: UC5 Results – MW 

MW 
 

Tuning 
Time (s) 

Training 
Time (s) 

Forecasting 
Time (s) 

RMSE 
Accuracy 

(%) 

Average 
Over 

Prediction 
(%) 

Average 
Under 

Prediction 
(%) 

Six Month 
Ahead 

Min 

1,400.7 

0.7 0.0 1.1 -1,860.2 

9.6 -0.6 Average 1.0 0.0 1.6 74.9 

Max 1.2 0.0 2.4 100.0 

Month 
Ahead 

Min 

1,400.7 

0.4 0.0 1.1 -502.2 

2.4 -0.4 Average 0.7 0.0 1.4 80.1 

Max 1.2 0.0 2.3 100.0 

Week 
Ahead 

Min 

1,400.7 

0.4 0.0 0.6 -50.0 

0.7 -0.3 Average 0.9 0.0 1.1 83.2 

Max 2.7 0.0 1.6 100.0 

Day Ahead 

Min 

1,400.7 

0.3 0.0 0.3 0.0 

0.2 -0.2 Average 0.9 0.0 0.9 82.4 

Max 2.5 0.0 3.9 100.0 

Hour 
Ahead 

Min 

1,400.7 

0.1 0.0 0.0 0.0 

0.0 0.0 Average 0.3 0.0 0.3 94.3 

Max 1.3 0.0 3.1 100.0 

Table 40: UC 5 Results - MVAr 

MVAr 
 

Tuning Time 
(s) 

Training Time 
(s) 

Forecasting Time 
(s) 

RMSE 

Six Month Ahead 

Min 

785.7 

0.4 0.0 1.3 

Average 0.7 0.0 1.7 

Max 1.1 0.0 2.6 

Month Ahead 

Min 

785.7 

0.3 0.0 1.0 

Average 0.5 0.0 1.3 

Max 1.1 0.0 1.5 

Week Ahead 

Min 

785.7 

0.2 0.0 0.9 

Average 0.5 0.0 1.2 

Max 2.4 0.0 1.6 

Day Ahead 

Min 

785.7 

0.2 0.0 0.1 

Average 0.7 0.0 0.9 

Max 4.5 0.0 1.9 

Hour Ahead 

Min 

785.7 

0.1 0.0 0.0 

Average 0.3 0.0 0.4 

Max 1.7 0.1 2.7 
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Table 41: UC5 – Accuracy Calculations 

 
Accuracy 

 
>50% >80% 

Six Months Ahead 97.54% 87.36% 

Month Ahead 97.74% 86.97% 

Week Ahead 98.96% 91.39% 

Day Ahead 100.00% 98.51% 

Hour Ahead 100.00% 100.00% 

 

Similar to the Prince Rock primary, this primary also performs strongly, adding more 
confidence that behaviour at more reduced voltage results in more accurate predictions. 
This is driven by behavioural patterns being easier to identify by machine learning 
techniques when there is less diversity of behaviours embedded in the profiles.  
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7.7. UC6: Generator Customer (Wind farm) 

Results for the generator customers introduces a comparison of RMSE/Capacity, where the 
wind farm under test has a 12 MW capacity.  

Table 42: UC6 Results – MW 

MW 
 

Tuning 
Time (s) 

Training 
Time (s) 

Forecasting 
Time (s) 

RMSE 
(MW) 

RMSE/ 
Capacity 

(%) 

Accuracy 
(%) 

Average 
Over 

Prediction 
(%) 

Average 
Under 

Prediction 
(%) 

Six Month 
Ahead 

Min 

863.4 

0.2 0.0 2.9 24.17 -164,436.8 

743.8 -23.6 Average 0.4 0.0 3.3 27.50 -212.2 

Max 0.8 0.0 3.9 32.50 100.0 

Month 
Ahead 

Min 

863.4 

0.1 0.0 0.8 6.67 -174,602.1 

261.0 -6.4 Average 0.2 0.0 2.4 20.00 -285.2 

Max 0.5 0.0 4.0 33.33 100.0 

Week 
Ahead 

Min 

863.4 

0.1 0.0 0.8 6.67 -27,606.3 

40.6 -1.2 Average 0.3 0.0 2.3 19.17 -116.0 

Max 0.8 0.0 4.1 34.17 100.0 

Day Ahead 

Min 

863.4 

0.1 0.0 0.3 2.50 -827.5 

2.6 -0.3 Average 0.2 0.0 1.5 12.50 71.9 

Max 1.3 0.0 6.0 50.00 100.0 

Hour 
Ahead 

Min 

863.4 

0.0 0.0 0.0 0.00 38.7 

0.1 0.0 Average 0.1 0.0 0.9 7.50 85.7 

Max 1.2 0.1 9.5 79.17 99.5 

Table 43: UC6 Results - MVAr 

MVAr 
 

Tuning Time 
(s) 

Training Time 
(s) 

Forecasting Time 
(s) 

RMSE 

Six Month Ahead 

Min 

570.6 

0.8 0.0 0.0 

Average 1.2 0.0 0.1 

Max 1.9 0.1 0.3 

Month Ahead 

Min 

570.6 

0.3 0.0 0.0 

Average 0.5 0.0 0.0 

Max 0.8 0.0 0.0 

Week Ahead 

Min 

570.6 

0.3 0.0 0.0 

Average 0.6 0.0 0.0 

Max 1.0 0.0 0.0 

Day Ahead 

Min 

570.6 

0.3 0.0 0.0 

Average 0.6 0.0 0.0 

Max 1.1 0.1 0.0 

Hour Ahead 

Min 

570.6 

0.1 0.0 0.0 

Average 0.2 0.0 0.0 

Max 3.4 0.0 0.0 
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Table 44: UC6 – Accuracy Calculations 

 
Accuracy 

 
>50% >80% 

Six Months Ahead 37.33% 12.76% 

Month Ahead 40.35% 18.68% 

Week Ahead 48.91% 27.49% 

Day Ahead 87.20% 71.73% 

Hour Ahead 87.50% 79.17% 

 
The wind farm prediction is acceptable in the near term but falls away in the future, this is 
mainly due to the increased variability of seasonal wind patterns versus day to day, a 
problem faced by weather forecaster with decades of experience and more complicated 
model. An acceptable criterion in the short term still allow the DSO to procure confidently in 
the near term horizon.  

7.8. UC7: Generator Customer (Solar farm) 

Table 45: UC7 Results MW 

MW 
 

Tuning  
Time (s) 

Training  
Time (s) 

Forecasting  
Time(s) 

RMSE 
(MW) 

RMSE/ 
Capacity 

(%) 
Accuracy 

Average 
Over 

Prediction 
(MW) 

Average 
Under 

Prediction 

Six Month Ahead 

Min 

863.4 

0.2 0.0 0.54 10.8 -5905.2 

60.1 -0.8 Average 0.4 0.0 0.67 13.4 58.4 

Max 0.8 0.0 0.73 14.6 100.0 

Month Ahead 

Min 

863.4 

0.1 0.0 0.31 6.2 -1661.6 

17.6 -0.9 Average 0.2 0.0 0.63 12.6 53.2 

Max 0.5 0.0 0.86 17.2 100.0 

Week Ahead 

Min 

863.4 

0.1 0.0 0.1 2.0 -397.8 

5.0 -0.8 Average 0.3 0.0 0.68 13.6 66.6 

Max 0.8 0.0 0.97 19.4 100.0 

Day Ahead 

Min 

863.4 

0.1 0.0 0.07 1.4 -106.6 

2.1 -0.7 Average 0.2 0.0 0.42 8.4 73.5 

Max 1.3 0.0 1.2 24.0 100.0 

Hour Ahead 

Min 

863.4 

0.0 0.0 0.04 0.80 -32.0 

0.1 -0.2 Average 0.1 0.0 0.32 6.40 74.2 

Max 1.2 0.1 0.72 14.40 99.6 
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Table 46: UC7 Results MVAr 

MVAr  Tuning Time Training Time Forecasting Time RMSE 

Six Month Ahead Min 570.6 0.8 0.0 0.0 

Average 1.2 0.0 0.1 

Max 1.9 0.1 0.2 

Month Ahead Min 570.6 0.3 0.0 0.0 

Average 0.5 0.0 0.0 

Max 0.8 0.0 0.0 

Week Ahead Min 570.6 0.3 0.0 0.0 

Average 0.6 0.0 0.0 

Max 1.0 0.0 0.0 

Day Ahead Min 570.6 0.3 0.0 0.0 

Average 0.6 0.0 0.0 

Max 1.1 0.1 0.0 

Hour Ahead Min 570.6 0.1 0.0 0.0 

Average 0.2 0.0 0.0 

Max 3.4 0.0 0.0 

 
Table 47 UC7 Accuracy Results 

 
Accuracy 

 
>50% >80% 

Six Months 
Ahead 

72.28% 58.16% 

Month Ahead 73.08% 54.70% 

Week Ahead 77.38% 52.68% 

Day Ahead 76.19% 60.12% 

Hour Ahead 89.58% 62.50% 

The solar predictions are most accurate in the near time but drop away quite quickly from 
accepted accuracy. However, once the accuracy has dropped it stabilises. This is due to the 
very predictive nature of seasonal and diurnal irradiance embedded in the patterns. Where 
solar forecasts may suffer in the near term is cloud cover effects, or low pressure 
introducing changeable conditions. Adding these weather phenomena as features in the 
future may improve near terms accuracy.  

 

7.9. UC8: Large Load Customer 

Table 48: UC8 Results – MW 

MW 
 

Tuning 
Time (s) 

Training 
Time (s) 

Forecasting 
Time (s) 

RMSE 
Accuracy 

(%) 

Average 
Over 

Prediction 
(%) 

Average 
Under 

Prediction 
(%) 

Six Month 
Ahead 

Min 

1,159.2 

0.3 0.0 0.1 -1,037.6 

5.8 -0.6 Average 0.4 0.0 3.3 32.4 

Max 0.6 0.0 6.0 100.0 

Month Min 1,159.2 0.3 0.0 0.1 -265.0 2.6 -0.6 
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MW 
 

Tuning 
Time (s) 

Training 
Time (s) 

Forecasting 
Time (s) 

RMSE 
Accuracy 

(%) 

Average 
Over 

Prediction 
(%) 

Average 
Under 

Prediction 
(%) 

Ahead Average 0.4 0.0 2.7 58.4 

Max 0.9 0.0 4.4 100.0 

Week 
Ahead 

Min 

1,159.2 

0.2 0.0 0.0 -126.7 

1.3 -0.4 Average 0.4 0.0 2.0 64.5 

Max 1.6 0.0 6.3 99.8 

Day Ahead 

Min 

1,159.2 

0.1 0.0 0.0 63.8 

0.0 0.0 Average 0.2 0.0 0.4 95.8 

Max 1.2 0.0 4.9 100.0 

Hour 
Ahead 

Min 

1,159.2 

0.3 0.0 0.1 -1037.6 

5.8 -0.6 Average 0.4 0.0 3.3 32.4 

Max 0.6 0.0 6.0 100.0 

Table 49: UC8 Results - MVAr 

MVAr 
 

Tuning Time 
(s) 

Training Time 
(s) 

Forecasting Time 
(s) 

RMSE 

Month Ahead 

Min 

1,348.7 

0.3 0.0 0.0 

Average 0.5 0.0 0.5 

Max 0.8 0.0 0.7 

Week Ahead 

Min 

1,348.7 

0.3 0.0 0.0 

Average 0.4 0.0 0.4 

Max 0.6 0.0 0.6 

Day Ahead 

Min 

1,348.7 

0.2 0.0 0.0 

Average 0.5 0.0 0.3 

Max 1.4 0.0 0.8 

Hour Ahead 

Min 

1,348.7 

0.1 0.0 0.0 

Average 0.3 0.0 0.1 

Max 3.4 0.0 1.2 
 

Table 50: UC8 – Accuracy Calculations 

 
Accuracy 

 
>50% >80% 

Month Ahead 66.66% 27.43% 

Week Ahead 71.58% 29.41% 

Day Ahead 79.17% 47.32% 

Hour Ahead 100.00% 93.75% 
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7.10. Forecasting with Active Network Management Data 

An initial example forecast was run for a case where a generator is subject to Active 
Network Management (ANM) control. This is real-time control of generator export with 
respect to a specific constraint location that the generator contributes to. ANM Data has 
been provided by a UK DNO. The data provided is for January 2017 and is for two 
measurement points at GSP transformers and for the ANM controlled wind farm output. 
The aim of this forecast is to predict the output of the wind farm.  

The data is extracted from the ANM Historian and it is based on change. This has required 
data processing to organise the data into a per second profile from 1st January 2017 to 12th 
January 2017. A day ahead forecast is produced for the 12th of January 2017 based on the 
previous 11 days.  

No temperature or other weather data has been included in this forecast given the 
requirement to sample it at a per second resolution, however, should this information be 
required there are upsampling techniques that can be employed. The features used in this 
forecast are: 

 Hour; 

 Day of Week; 

 Quarter; 

 Month; 

 Year; 

 Day of Year; 

 Day of Month; and 

 Week of Year. 

The error metrics are shown in Table 51. 

Table 51: ANM Data Forecast Error Metrics 

Error Metric Value 

Mean Squared Error 171.4 

Mean Absolute Error 10.5 

Root Mean Squared Error 13.1 

Mean Absolute Percentage Error 32.6 

The prediction is shown in Figure 62. 

 
Figure 62: ANM Data forecast versus actual 

The prediction appears to follow a more stepped profile, rather than the very fluid profile 
seen in the actual data, resulting in the smoothing of some peaks and troughs. There is 
potential for this to be smoothed by using a different time resolution, for example minutely. 

M
W
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The actual data is frozen after 15:00 on 12th January and so some scrutiny of the input data 
would be required, as recommended for all future forecasts.  

Additionally, the use of secondly data significantly increases the tuning and training times. 
These are recorded as 4978 seconds to tune the model and 116 seconds to train it.  

The result here show that second by second data would require additional inputs in order to 
produce usable ultra-short term forecasts, potentially including weather data, and the 
selection of inputs would depend on the intended application of the forecast.  

An potential avenue of further investigation would be to look at how second-by-second data 
could be used to update hour ahead forecasts for when peaks or contraints are likely to 
occur. For example, a weather front moving from west to east will affect DER based on their 
geographical location. The windfarm to the west output picks up before the windfarm in the 
east.  ANM data could be used to investigate how forecasts could be corrected based on 
learning the relationship of how behaviour is related between sites of the same type, e.g. 
wind or solar, where second-by-second or minute-by-minute data is available.  

7.11. Summary of results 

The key observations from the results generated show that: 

 For a GSP where there is already a high level of aggregation in the power flow data, 
the prediction improves if the GSP is disaggregated down to its individual 
transformers, and predictions are performed for each in turn. The prediction for the 
whole GSP is a sum of the individual transformer tuning, training, forecasting times 
and errors.  

 At the BSP level using a feature set that does not include temperature or wind and 
solar data still results in a suitable performance for Use Case 2. The accuracy metric 
shows that over 80% accuracy for more than 80% of the time for all time horizons 
except for the six months ahead prediction. For BSPs that have a significant 
penetration of embedded generation connected behind it, including these additional 
features will help to improve the prediction. It is expected that this will be the case 
for Use Case 4.  

 At a Primary level, using a feature set that does not include temperature or wind and 
solar data still results in a suitable performance. As with the BSP case, if there is 
significant penetration of embedded generation behind the Primary, these additional 
features can help to improve the prediction. For demand dominated Primaries, 
including temperature in the feature set may also improve the prediction given the 
correlation between demand and temperature.  

 Predicting for generator customers will require a different feature set. For renewable 
generation such as wind and solar pertinent weather data (temperature, wind 
speed, wind output, solar irradiance, and solar output) will be required. It is more 
favourable to apply wind speed/direction and solar irradiance data to models to 
produce a generator export in kW given the nonlinear relationship between 
renewable resource and generation. The impact of the day of the week will be less 
significant, however, seasonality across the year will still be important. A variety of 
models are in the public domain as referenced from the renewables ninja website.  

 For load customers, the prediction is satisfactory using a feature list that does not 
include temperature. For individual large load sites, the performance of the method 
is satisfactory without this additional feature, however adding temperature if 
predicting for a number of aggregated load customers may improve the prediction.  
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 Tuning the model is not required every time a forecast is run. For the testing run in 
this section, the model was tuned once for each Use Case, and then a number of 
forecasts were run based on that single set of hyperparameters.  

 The model was trained ahead of every forecast. This is required as it ensures the 
most recent and relevant historical data is being applied to the prediction. Training 
the model takes a significantly shorter length of time than tuning, meaning that 
training for every forecast is not temporally impractical.  

 Predicting for longer time horizons requires more input data than predicting for 
shorter time horizons. Predicting for six months ahead has a requirement for 
sufficient training data that allows the method to determine the trends in order to 
predict so far ahead in the future. Conversely, predicting for an hour ahead will not 
require a full year of data, and providing that volume of information could result in 
overfitting.  The six months ahead timeframe was chosen purely to see what kind of 
accuracy could be obtained that far in advance rather than because it was expected 
that a six month lead time would be required to remedy any shortfall in flexibility 
services. Given the low level of accuracy compared to month ahead forecasts, it 
would be useful to test forecasts at a three month ahead timeframe to determine 
whether they were accurate enough to support flexibility service planning.  It is likely 
that a three month lead time would allow for remedial actions to take place if a 
shortfall in flexibility services was found.  

 The accuracy of the prediction improves as the time horizon shortens. In every Use 
Case, the accuracy is improved in the day ahead and hour ahead predictions when 
compared with the longer time horizons. In all Use Cases, the accuracy is greater 
than 50% for more than 80% of the time for the hour ahead time horizon.  

 For using ANM data for ultra-short term forecasting, more work is needed to 
understand the required input data set for producing usable forecasts.  
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8. Conclusions 

This project focused on the analysis of methods and solutions for forecasting load and 
generation at the distribution level. It was structured in three major steps: 

1. Build a conceptual framework for being able to produce forecasts for GSPs, BSPs, 
primaries, and significant loads or generators; 

2. Explore the methods and solutions for building the necessary blocks for building the 
developed framework; 

3. Perform thorough testing on the best candidate methods for forecasting at the 
distribution level. 

To be able to operationalise forecasting at the distribution level, significant automation is 
required as the number of variables to be forecasted is too large. Within the DSO vision, 
there will be a need to forecast at different levels of aggregation and for multiple time 
horizons from very short-term to longer-term horizons. 

Therefore, the creation of a database and methods that reduce user-in-loop requirements 
was proposed. It was also within the scope of the project to deliver a toolchain that relied as 
much as possible on open source libraries. 

8.1. Database Solution 

The database solution enables a common source of data for forecasting methods to interact 
with. It will allow for the data required for forecasts to be fed into Python based forecasting 
methods, and hold the outputs seamlessly. The structuring of the database will allow 
querying and appending to the database conveniently as new data sets are added as 
features or new assets added.  
Furthermore, the database will allow for the extraction of the data as part of load flow 
forecasts to be extracted from the database as part of procurement tasks, as they become 
more defined in the other areas of the projects.  

One major challenge for the database is the automation of the population tasks. A process 
has been presented here with all the required SQL queries and input/output to make it 
work. However, the metadata and time series data will be in many uncommon structures 
and will have to be cleaned up using an automated sort process. This is outside the scope of 
this project, but an important task to consider while populating the database.  

Although a cleansed data table is provided in the database, it was assumed the external 
data science methods applied to cleanse raw input data would be undertaken by the DNO 
or a third party and exported to the cleansed table for use in forecasts. It is left to the DNO 
to manage this data quality, only raw data with the very minimal of fixes was used in this 
project.   

8.2. Forecasting Methods 

As to forecasting, three methods emerged as powerful candidates for becoming a method 
of reference for the DSO of the future: artificial intelligence based methods LSTM and 
XGBoost as well as the conventional ARIMA method. The latter was selected as a benchmark 
as it is one of the most widely used methods for forecasting. The former are trending as 
solutions that provide good accuracy results. Other conventional and AI based methods 
were tested, but with less interesting results. 

It was found that conventional and AI based methods can perform equally if properly 
parameterised and trained. However, the conventional ARIMA method requires more user-
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in-the-loop and deeper data science skills to master effectively. ARIMA as a general rule 
takes longer to train than the AI based counterparts and is significantly more complex to 
test different combinations of features (or regressors). Given that the expected volume and 
applications of forecasting at the distribution level is very large, these are significant 
setbacks to the usage of conventional methods. In addition to this, the most complete 
ARIMA libraries are only available in R language, whereas AI based methods are vastly 
supported both in R and Python. 

Among the AI based solutions XGBoost, a tree based method, is a key reference. The 
libraries are user friendly and it allows understanding what the final method values within 
its decision trees. It is also fast to train and relatively easy to get to good accuracy results. 
XGBoost provided the best results of the three methods tested, closely followed by LSTM. 
LSTM, a recurring neural network method, could not be fully explored due to the lack of 
Graphical Processor Unit (GPU) machines that could improve training times. Thus, the 
number of feature combinations that could be tested with LSTM was inferior to the number 
of tests conducted with XGBoost. It is expected that if more tests would have been run, the 
performance of LSTM would have increased to levels comparable with XGBoost, but likely 
not improve beyond the XGBoost level. 

XGBoost is, therefore, the recommended method, as it allows simplified testing of features 
and it can also be easily and effectively automated. Because of the wide community of users 
among the data scientists, it is supported in a number of open source formats and it is 
expected that there will be continued support for years to come.  

8.3. Tuning Approach 

In order to get the best results from AI based methods, it is necessary to tune the training 
parameters. To do so, it is recommended that an historical dataset different from the 
training set is used to avoid a phenomenon called overfitting, which occurs when the 
forecast corresponds to exactly to or very closely to the historical dataset, instead of 
drawing trends and extrapolating into the future. 

Given that the datasets available were limited in extension and that there was an aim to 
build multiple forecasts across the available period, the selected tuning set was covering the 
same period as the first training set analysed. Results did not show any signs of overfitting, 
but still, it is recommended that tuning in a deployment scenario is done using older 
datasets. 

The tuning action is, in fact, a search process that looks for the optimal combination of 
hyperparameters required to run the AI method training task. However, generic 
optimisation tools do not work in this case as there is no information on the derivatives of 
the function being optimised. Different methods are applicable, based generally in random 
search or involving some sort of heuristic process. Such a process can be a computational 
burden. It is a particular concern in the LSTM implementation as LSTM takes longer to train 
than XGBoost. The current state-of-the-art solution to improve the tuning process is to 
apply Bayesian optimisation processes combined with a tree-structured Parzen estimator. 
Bayesian optimisation is a probabilistic model based approach for finding the minimum of 
any function that returns a real-value metric. The tree-structured Parzen estimator 
application structures the hyperparameter search space ordering the search for 
hyperparameters.  

This combination of methods is available with another open source tool called HyperOpt. It 
was successfully applied in the tuning process of all the results presented in this report. 
Further testing is recommended to identify the most relevant hyperparameters to be 
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optimised, as by increasing the number of hyperparameters within the optimisation, finding 
near optimal solutions becomes increasingly challenging. 

The conducted analysis showed that for the XGBoost case the number of estimators, the 
maximum depth of a tree and minimum child weight are critical parameters on the quality 
of final forecasts. Other hyperparameters seem to be impactful as well but it is hard to 
assess the trade-off of including them or not in the optimisation process. It was also 
observed that a conservative approach for the number of estimators is advisable and 
instead of optimising its value a sufficiently large number of trees should be imposed. In all 
presented results 1000 was the selected number of trees. It never presented worst results 
than cases with fewer trees and the computational burden does not increase significantly 
the training period. It also allows HyperOpt search to focus on other sensitive variables. The 
only identified drawback is that as the number of trees increases it becomes more complex 
for a human analysis of the tree contents, albeit still possible. 

A possible action for the future is to perform a two level optimisation where first an 
optimisation of the most critical hyperparameters is performed and second the critical 
parameters are fixed and optimisation is applied to the second set of important parameters. 
This will penalise speed for an incremental gain in accuracy. 

8.4. Results and Key Recommendations 

To test the final implementation of the forecasting process, seven use cases were defined: 
one referring to a GSP, two for BSPs, two for primaries, one large load, and one wind 
generator. Initially, there was a general expectation that the greater the level of aggregation 
the easier it would become to build a meaningful forecast. Throughout the project, it was 
concluded that this is only valid up to a certain level and depends on several factors.  

Primaries and BSPs presented the best accuracy levels, with a slight edge towards primaries, 
followed by load and generator individual profiles and finally the GSP. The reason behind 
this is that moving from individual loads / generators to the primary level there is a gain in 
aggregation that defines a more consistent pattern and makes it easier to forecast.  

Moving one level higher in aggregation would, in theory, provide even better results as 
aggregating cancels behavioural dispersion of energy consumption or isolated impacts of 
generation fluctuation. However, there is an increasing importance of the physical grid and 
grid control aspects on the distribution of the power flows in the network, hence 
introducing a disturbance to the forecasting model. Actions such as load transfers, tapping 
of transformers or existing links to other substations alter the flow distribution in ways that 
are not trivial for the forecasting methods to pick up.  

This effect becomes even more important at the GSP level as controllability and ties to other 
network areas proliferate. To get meaningful results at the GSP level there was a need to 
break the analysis down to the individual transformer level. In all other aggregated cases, 
the net flow at the substation, computed as the sum of the flows at the different 
transformers that compose that substation, provided good enough results. When 
aggregated at a country level the aggregation benefits should again be very important and 
the effects of the grid get cancelled out due to the fact that everything is being considered 
and not only parts of the network. 

Having analysed the quality of the results by aggregation it is also necessary to analyse the 
impact of the forecast horizon on performance. In this case and as it was expected from the 
start, the greater the horizon the less accurate the results are on average. Yet, in terms of 
minimum and maximum accuracy ranges, it is verified that in the very short-term 
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forecasting, hour and day ahead, the results can fluctuate more than in week or month 
ahead. These present minimum and maximum values that are much closer to the average 
accuracy metric. 

Six months ahead was, as expected, the case with smaller accuracy as it refers to a really 
long period. Perhaps with several more years of historical data, this could be improved. 
Month ahead, week ahead and day ahead generally provided good results that could likely 
be used with confidence and with increased levels of accuracy to procure services for the 
DSO. 

The hour ahead presented good results, but the granularity of the data was not sufficient to 
provide greater resolution forecasts. Adding additional sources of data such as smart meter 
data or ANM data of the area of the GSP / BSP / primary would likely further improve the 
quality and the applications of such forecast outputs. 

Finally, feature-wise, several were tested and these can be grouped in different categories. 
There are basic features that are recommended at all times: hour of the day, day of the 
week, quarter, month, year, day of the year, day of the month, week of the year. Some of 
these, such as day of the week can and should be one hot encoding, which is the action of 
instead of labelling weekdays from 1 to 7, creating seven binary variables to avoid 
misinterpretation by the forecasting method. In the forecast of generation, some of these 
might not be relevant, such as the day of the week, but it will always depend on the type of 
generator. If a combined heat and power generator is being forecasted there will most likely 
be a correlation of power output and day of the week. 

The category of features is basic weather related features. Oftentimes, load is driven by 
temperature, which is fairly easy to get forecasts for, but also other variables, such as 
humidity or air pressure. The latter ought to be more difficult to get forecasts for that could 
be used as features and therefore temperature has been successfully used in many of the 
use cases. 

The last category is also weather related, but influencing the generators instead of the 
loads. Solar irradiance, wind speed, and direction forecasts are important features when 
forecasting generation. It is advisable that these are converted into power values using a 
generic turbine or solar panel that is close to the ones on site. It improves the quality of the 
results as the relation between wind speed/solar irradiance and power is not linear. 

8.5. Comparison with UKPN’s KASM Project 

To put the results of the EFFS forecasting methodology in context we have compared 
accuracy metrics against UK Power Networks’ (UKPN) Kent Active System Management 
(KASM) project. This is a relevant comparison as it is relatively recent and also, like EFFS, the 
forecasting focussed on the 33kV and 132kV networks.  

The aim of UK Power Networks (UKPN) Kent Active System Management (KASM) was to 
demonstrate Great Britain’s first use of real-time power system modelling and short term 
forecasting on electricity distribution networks. It delivered enhanced visibility and analysis 
capabilities regarding the power flows and stability of the 132 kV network to control room 
engineers and outage and network planners.  
  
Three specific capabilities were successfully developed and trialled: 
 

 The sharing of real-time measurement data between the NG and UKPN control 
rooms via an Inter-Control Centre Communications Protocol (ICCP) link; 
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 Forecasting modules which uses advanced analytics and machine learning 
techniques to provide realistic load and generation forecasts for the KASM trial area; 
and 

 Contingency analysis which provides state estimation and power flow calculations 
for contingent scenarios. 

 
In terms of forecasting, this workstream developed the systems that are used in conjunction 
with the contingency analysis: generator and load modules; forecasting engine; historical 
generation and load patterns; historical weather patterns; optimisation and normalisation 
modules. 

The EFFS forecasting evaluation has specifically outlined the forecasting methods explored 
and selected for development and provides enough information for them to be recreated. 
The details of the feature exploration and their impacts on the predictions are provided, 
along with the results of extensive testing on different customers, locations, voltage levels, 
and time horizons.  

The KASM project assessed the accuracy of its proprietary ensemble forecasting method but 
using different metrics. The EFFS results compare favourably when looking at the MAPE and 
RSME/Capacity figures achieved:  

The outputs of the forecasting from the KASM project are summarised in Table 52. 

Table 52: KASM/EFFS comparison 

 KASM EFFS 

MAPE for Load 9% day ahead 3.5% day ahead 

RMSE/Capacity for 
Solar 

10% day ahead 8.4% day ahead 

RMSE/Capacity for 
Wind 

39.95 17.37 

 

Had the EFFS results been significantly worse than those achieved by KASM, it would have 
prompted further analysis and potentially a change of approach.  However the favourable 
results suggest that while the risk that poor forecasts due to poor underlying data remains 
(as it would for any forecasting method), the risk of poor forecasts due to poor forecasting 
methodology is now low.  

 

8.6. Transferability to other DNOs 

One of the objectives of the project is to produce a forecasting evaluation report that can be 
published and shared with the industry that details the models, their efficacy and makes 
available the tools for other DNO stakeholders to use in their own licence areas. The 
forecasting methods investigated and implemented in this project have been developed 
using fully open source libraries and environments. The methods themselves are agnostic to 
the location, voltage level, and time horizon. The Use Cases described in this report cover 
GSP, BSP, and Primary substations and load and generation customers, in various locations 
across both WPD’s and other DNO licence areas.  

The performance of the forecasting methods will also depend on the input data made 
available. While this project has not employed data cleansing techniques on the input data, 
some scrutiny should be applied to ensure erroneous values are removed, identify if meters 
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are polling data with correct polarity, and identify when metering equipment is not 
functioning correctly.  

 

8.7. Recommendations for Further Research 

The limited time available for this portion of the EFFS project has meant that a limited 
number of Use Cases have been investigated. While the tests conducted can provide a 
general view of performance at different voltage levels and for different time horizons, 
there is some investigation that could be carried out at a later stage to further understand 
the operational benefits and limitations of the methods. This includes: 
 

 Further testing with ANM system data to determine the benefit of forecasting a 
higher time resolution; 

 Investigation of performance on lower voltage feeders; 

 Further investigation into the disaggregated approach to predicting at a GSP level; 
and 

 The implementation of LSTM on a GPU to determine if performance improves.  
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9. Appendix A: Generator Types 

The generator types provided: 

 Solar; 

 Wind; 

 CHP; 

 Biomass; 

 Anaerobic Digestors; 

 STOR; and 

 Battery. 

 
Figure 63: Solar Profile (MW) 

 
 

 
Figure 64: Wind Profile (MW) 

 
 

 
Figure 65: CHP (MW) 
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Figure 66: Biomass (MW) 

 

 
Figure 67: Anaerobic Digestion (MW) 

 
 

 
Figure 68: STOR Generation (MW) 

 
 

 
Figure 69: Battery (MW) 
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10. Appendix B: Example Forecasting Flow Charts 

 
 

Figure 70: Forecasting for ARMA/ARIMA Model 
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Figure 71: Forecasting for Neural Networks 
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11. Appendix C: Results Graphs 

In following sections the graphical results are displayed for each time horizon and for each 
location/customer studied. The results show the dispersion of error (error in relation to the 
line of best fit), the histogram of error (frequency and magnitude of error), and the 
forecasted values against the actual values.  

11.1. Indian Queens 

11.1.1. Transformer 1 

11.1.1.1. Six Months Ahead 

 

Figure 72: Six Month Ahead results for real power, January-June 2016. 
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Figure 73: Six Month Ahead results for reactive power, January-June 2016.  

11.1.1.2. Month Ahead 

 

Figure 74: Month Ahead results for real power, January 2016.  
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Figure 75: Month Ahead results for reactive power, January 2016.  

11.1.1.3. Week Ahead 

 

Figure 76: Week Ahead results for real power, 1-7 January 2016. 
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Figure 77: Week Ahead results for reactive power, 1-7 January 2016.  

11.1.1.4. Day Ahead 

 

Figure 78: Day Ahead results for real power, 1
st

 January 2016.  
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Figure 79: Day Ahead results for reactive power, 1
st

 January 2016.  

11.1.1.5. Hour Ahead 

 

Figure 80: Hour Ahead results for real power, 31
st

 December 2015.  
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Figure 81: Hour Ahead results for reactive power, 31
st

 December 2015.  
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11.1.2. Transformer 2 

11.1.2.1. Six Months Ahead 

 

Figure 82: Six Month Ahead results for real power, January-June 2016.  

 

Figure 83: Six Month Ahead results for reactive power, January-June 2016.  
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11.1.2.2. Month Ahead 

 

Figure 84: Month Ahead results for real power, January 2016.  

 

Figure 85: Month Ahead results for reactive power, January 2016.  
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11.1.2.3. Week Ahead 

 

Figure 86: Week Ahead results for real power, 1-7 January 2016.  

 

Figure 87: Week Ahead results for reactive power, 1-7 January 2016.  
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11.1.2.4. Day Ahead 

 

Figure 88: Day Ahead results for real power, 1
st

 January 2016.  

 

Figure 89: Day Ahead results for reactive power, 1
st

 January 2016.  
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11.1.2.5. Hour Ahead 

 

Figure 90: Hour Ahead results for real power, 31
st

 December 2015.  

 
Figure 91: Hour Ahead results for reactive power, 31

st
 December 2015.  

  



 

 
 

122 
 

FORECASTING EVALUATION REPORT 
 

11.1.3. Transformer 3 

11.1.3.1. Six Months Ahead 

 

Figure 92: Six Month Ahead results for real power, January-June 2016.  

 

Figure 93: Six Month Ahead results for reactive power, January-June 2016.  
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11.1.3.2. Month Ahead 

 

Figure 94: Month Ahead results for real power, January 2016.  

 

Figure 95: Month Ahead results for reactive power, January 2016.  
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11.1.3.3. Week Ahead 

 

Figure 96: Week Ahead results for real power, 1-7 January 2016.  

 

Figure 97: Week Ahead results for reactive power, 1-7 January 2016.  



 

 
 

125 
 

FORECASTING EVALUATION REPORT 
 

11.1.3.4. Day Ahead 

 

Figure 98: Day Ahead results for real power, 1
st

 January 2016.  

 

Figure 99: Day Ahead results for reactive power, 1
st

 January 2016.  
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11.1.3.5. Hour Ahead 

 

Figure 100: Hour Ahead results for real power, 31
st

 December 2015.  

 
Figure 101: Hour Ahead results for reactive power, 31

st
 December 2015.  

 
  



 

 
 

127 
 

FORECASTING EVALUATION REPORT 
 

11.1.4. Transformer 4 

11.1.4.1. Six Months Ahead 

 

Figure 102: Six Month Ahead results for real power, January-June 2016.  

 

Figure 103: Six Month Ahead results for reactive power, January-June 2016.  
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11.1.4.2. Month Ahead 

 

Figure 104: Month Ahead results for real power, January 2016.  

 

Figure 105: Month Ahead results for reactive power, January 2016.  
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11.1.4.3. Week Ahead 

 

Figure 106: Week Ahead results for real power, 1-7 January 2016.  

 

Figure 107: Week Ahead results for reactive power, 1-7 January 2016.  
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11.1.4.4. Day Ahead 

 

Figure 108: Day Ahead results for real power, 1
st

 January 2016.  

 

Figure 109: Day Ahead results for reactive power, 1
st

 January 2016.  
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11.1.4.5. Hour Ahead 

 

Figure 110: Hour Ahead results for real power, 31
st

 December 2015.  

 
Figure 111: Hour Ahead results for reactive power, 31

st
 December 2015.  
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11.2. Cardiff South 

11.2.1. Six Months Ahead 

 

Figure 112: Six Month Ahead results for real power, January-June 2016.  

 

Figure 113: Six Month Ahead results for reactive power, January-June 2016.  
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11.2.2. Month Ahead 

 

Figure 114: Month Ahead results for real power, January 2016.  

 

Figure 115: Month Ahead results for reactive power, January 2016.  
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11.2.3. Week Ahead 

 

Figure 116: Week Ahead results for real power, 1-7 January 2016.  

 

Figure 117: Week Ahead results for reactive power, 1-7 January 2016.  
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11.2.4. Day Ahead 

 

Figure 118: Day Ahead results for real power, 1
st

 January 2016.  

 

Figure 119: Day Ahead results for reactive power, 1
st

 January 2016.  
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11.2.5. Hour Ahead 

 

Figure 120: Hour Ahead results for real power, 31
st

 December 2015.  

 
Figure 121: Hour Ahead results for reactive power, 31

st
 December 2015.  
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11.3. Prince Rock 

11.3.1. Six Months Ahead 

 

Figure 122: Six Month Ahead results for real power, January-June 2016.  

 

Figure 123: Six Month Ahead results for reactive power, January-June 2016.  
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11.3.2. Month Ahead 

 

Figure 124: Month Ahead results for real power, January 2016.  

 

Figure 125: Month Ahead results for reactive power, January 2016.  
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11.3.3. Week Ahead 

 

Figure 126: Week Ahead results for real power, 1-7 January 2016.  

 

Figure 127: Week Ahead results for reactive power, 1-7 January 2016.  
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11.3.4. Day Ahead 

 

Figure 128: Day Ahead results for real power, 1
st

 January 2016.  

 

Figure 129: Day Ahead results for reactive power, 1
st

 January 2016.  
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11.3.5. Hour Ahead 

 

Figure 130: Hour Ahead results for real power, 31
st

 December 2015.  

 
Figure 131: Hour Ahead results for reactive power, 31

st
 December 2015.  
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11.4. Truro 

11.4.1. Six Months Ahead 

 

Figure 132: Six Month Ahead results for real power, January-June 2016. 

 

Figure 133: Six Month Ahead results for reactive power, January-June 2016.  
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11.4.2. Month Ahead 

 

Figure 134: Month Ahead results for real power, January 2016.  

 

Figure 135: Month Ahead results for reactive power, January 2016.  
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11.4.3. Week Ahead 

Figure 136: Week Ahead results for real power, 1-7 January 2016.  

Figure 137: Week Ahead results for reactive power, 1-7 January 2016.  
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11.4.4. Day Ahead 

Figure 138: Day Ahead results for real power, 1
st

 January 2016.  

 

Figure 139: Day Ahead results for reactive power, 1
st

 January 2016.  
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11.4.5. Hour Ahead 

Figure 140: Hour Ahead results for real power, 31
st

 December 2015.  

Figure 141: Hour Ahead results for reactive power, 31
st

 December 2015.  
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11.5. Llynfi Valley 

11.5.1. Six Months Ahead 

Figure 142: Six Month Ahead results for real power, January-June 2016.  

 

Figure 143: Six Month Ahead results for reactive power, January-June 2016.  
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11.5.2. Month Ahead 

 

Figure 144: Month Ahead results for real power, January 2016.  

 

Figure 145: Month Ahead results for reactive power, January 2016.  
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11.5.3. Week Ahead 

Figure 146: Week Ahead results for real power, 1-7 January 2016.  

Figure 147: Week Ahead results for reactive power, 1-7 January 2016.  



 

 
 

150 
 

FORECASTING EVALUATION REPORT 
 

11.5.4. Day Ahead 

Figure 148: Day Ahead results for real power, 1
st

 January 2016.  

Figure 149: Day Ahead results for reactive power, 1
st

 January 2016.  
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11.5.5. Hour Ahead 

Figure 150: Hour Ahead results for real power, 31
st

 December 2015.  

 
Figure 151: Hour Ahead results for reactive power, 31

st
 December 2015.  

 

  



 

 
 

152 
 

FORECASTING EVALUATION REPORT 
 

11.6. Generator Customer Wind Farm 

11.6.1. Six Months Ahead 

 

Figure 152: Six Month Ahead results for real power, January-June 2016.  

Figure 153: Six Month Ahead results for reactive power, January-June 2016.  
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11.6.2. Month Ahead 

 

Figure 154: Month Ahead results for real power, January 2016.  

Figure 155: Month Ahead results for reactive power, January 2016.  
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11.6.3. Week Ahead 

Figure 156: Week Ahead results for real power, 1-7 January 2016.  

Figure 157: Week Ahead results for reactive power, 1-7 January 2016.  
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11.6.4. Day Ahead 

Figure 158: Day Ahead results for real power, 1
st

 January 2016.  

Figure 159: Day Ahead results for reactive power, 1
st

 January 2016.  
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11.6.5. Hour Ahead 

Figure 160: Hour Ahead results for real power, 31
st

 December 2015.  

 
Figure 161: Hour Ahead results for reactive power, 31

st
 December 2015.  
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11.7. Solar Farm 

11.7.1. Six Month Ahead 
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Figure 162: Six Month Ahead :31

st
 December 2016 

11.7.2. Day Ahead 
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Figure 163:Day Ahead 3rd June 2016 
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11.8. Load Customer 

11.8.1. Month Ahead 

Figure 164: Month Ahead results for real power, July 2017.  

Figure 165: Month Ahead results for reactive power, July 2017.  
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11.8.2. Week Ahead 

Figure 166: Week Ahead results for real power, 1-7 July 2017.  

Figure 167: Week Ahead results for reactive power, 1-7 July 2017.  
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11.8.3. Day Ahead 

Figure 168: Day Ahead results for real power, 1
st

 July 2017.  

Figure 169: Day Ahead results for reactive power, 1
st

 July 2017.  
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11.8.4. Hour Ahead 

Figure 170: Hour Ahead results for real power, 30
th

 June 2017.  

 

Figure 171: Hour Ahead results for reactive power, 30th June 2017.  

 


